Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 273(Pt 1): 132827, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38834128

RESUMO

Self-healing hydrogels possess an ability to recover their functionality after experiencing damage by regenerating cross-links. The main challenge in making self-healing hydrogels based on host-guest (HG) interactions is their limited mechanical strength, which can be solved using beta-cyclodextrin dimers (ß-CDsD). Here, ß-CDsD as a host cross-linker was used to increase the mechanical property of the HG interactions. Alginate with acceptable biocompatibility was modified by dopamine (ALG-DOP) and employed as a guest polymer. Self-healing hydrogel was developed between them, and Ag nanoparticles were added to create an antibacterial activity. Dopamine with appropriate size and suitable adhesiveness established HG interactions with ß-CDsD, and cells were able to grow well on hydrogel. This hydrogel showed an impressive self-healing capability <5 min. These hydrogels revealed a respectable porosity from 15 to 55 µm essential for exchanging the substances required for cell growth and cell waste elimination. Biocompatibility was investigated against NIH 3 T3 fibroblasts cells, and the results showed that the cells grew well. The in vitro release of curcumin from the hydrogel was examined in PBS at pH of 7.4. The hydrogel can be a perfect candidate for controlled drug release, and wound-dressing due to self-healing property, antibacterial activity, adhesion, and biocompatibility.


Assuntos
Alginatos , Antibacterianos , Dopamina , Hidrogéis , beta-Ciclodextrinas , Alginatos/química , beta-Ciclodextrinas/química , Antibacterianos/farmacologia , Antibacterianos/química , Camundongos , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Dopamina/química , Células NIH 3T3 , Liberação Controlada de Fármacos , Dimerização , Escherichia coli/efeitos dos fármacos
2.
Int J Biol Macromol ; 268(Pt 1): 131700, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38657919

RESUMO

Overproduction of reactive oxygen species (ROS) in infected wounds induces a tremendous inflammatory reaction to delay wound healing. To address this problem, we designed a multifunctional polyacrylamide/PVA-based hydrogel containing synthesized poly(1-glycidyl-3-butylimidazolium salicylate) (polyGBImSal) and fabricated polydopamine-coated polyphenolic nanosheet (PDA@PNS) for wound dressing. The PDA@PNS particles were designed to induce I) antioxidant and anti-inflammatory features through ROS-scavenging and II) cell adhesive properties by the existing polydopamine into the hydrogels. The poly(ionic liquid)-based polyGBImSal was designed to allocate effective hydrogel antimicrobial activity. The fabricated hydrogel nanocomposites showed excellent properties in the swelling ratio, cell adhesiveness, protein adsorption, and anti-inflammatory, proving their general performance for application in wound healing. Furthermore, these hydrogels showed high antimicrobial activity (over 95 %) against three common wound-infecting pathogenic microbes: Escherichia coli, Staphylococcus aureus, and Candida albicans. The healing process of full-thickness dermal wounds in rats was accelerated by applying hydrogel nanocomposites with 0.5 wt% of PDA@PNS and 28 wt% of polyGBImSal. The wound closure contraction attained full closure, reaching 100 %, after 14 days, contrasted with the control group employing commercial wound dressing (Tegaderm), which achieved a closure rate of 68 % within the equivalent timeframe. These results make these hydrogel nanocomposites promising candidates for multifunctional wound dressing applications.


Assuntos
Anti-Infecciosos , Antioxidantes , Hidrogéis , Indóis , Nanocompostos , Polímeros , Cicatrização , Cicatrização/efeitos dos fármacos , Indóis/química , Indóis/farmacologia , Nanocompostos/química , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Polímeros/química , Ratos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Masculino , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Ratos Sprague-Dawley
3.
Sci Rep ; 14(1): 3907, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365968

RESUMO

Green tea polyphenols (GTPs), particularly epigallocatechin-3-gallate, stand out among natural small molecules screened for their ability to target protein aggregates due to their potent anti-amyloidogenic and neuroprotective activities against various disease-related peptides and proteins. However, the clinical applications of GTPs in amyloid-related diseases have been greatly limited by drawbacks such as poor chemical stability and low bioavailability. To address these limitations, this study utilized an Iranian green tea polyphenolic extract as a reducing agent to neutralize silver ions and facilitate the formation of silver nanoparticle capped by GTPs (GTPs-capped AgNPs). The results obtained from this study demonstrate that GTPs-capped AgNPs are more effective than free GTPs at inhibiting amyloid fibrillation and reducing cytotoxicity induced by amyloid fibrils of human insulin and α-synuclein (α-syn). This improved efficacy is attributed to the increased surface/volume ratio of GTPs-capped AgNPs, which can enhance their binding affinity to amyloidogenic species and boosts their antioxidant activity. The mechanism by which GTPs-capped AgNPs inhibit amyloid fibrillation appears to vary depending on the target protein. For structured protein human insulin, GTPs-capped AgNPs hinder fibrillation by constraining the protein in its native-like state. In contrast, GTPs-capped AgNPs modulate fibrillation of intrinsically disordered proteins like α-syn by redirecting the aggregation pathway towards the formation of non-toxic off-pathway oligomers or amorphous aggregates. These findings highlight polyphenol-functionalized nanoparticles as a promising strategy for targeting protein aggregates associated with neurodegenerative diseases.


Assuntos
Nanopartículas Metálicas , alfa-Sinucleína , Humanos , Prata/farmacologia , Prata/química , Agregados Proteicos , Antioxidantes , Irã (Geográfico) , Amiloide/metabolismo , Polifenóis/farmacologia , Proteínas Amiloidogênicas , Insulina , Chá/química
4.
Food Sci Nutr ; 12(2): 1023-1034, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38370090

RESUMO

The aim of the present study was to fabricate, characterize, and evaluate the in vitro antimicrobial and antioxidant properties of zein/polyvinyl alcohol (ZN/PVA) nanofibers containing 2% and 4% of thymoquinone (TQ), either alone or in combination with electrosprayed ZN nanoparticles containing 1% and 2% of resveratrol (RS). According to scanning electron microscopy analysis, the diameter of nanofibers and nanoparticles increased with increasing TQ and RS concentrations, respectively. The molecular interaction between ZN or PVA polymers and TQ or RS was confirmed by Fourier transform infrared spectroscopy. Thermogravimetric analysis showed that the thermal stability of nanofibers did not change with the addition of TQ and RS. Moreover, incorporation of TQ in nanofibers along with RS nanoparticles increased their antibacterial and free radical scavenging activities based on broth dilution and DPPH methods, respectively (p ≤ .05). Escherichia coli O157:H7 (as a Gram-negative pathogenic bacteria) was more resistant to all treatments than Staphylococcus aureus (as a Gram-positive pathogenic bacteria). In addition, the combined use of TQ in nanofibers and RS nanoparticles had antagonistic antibacterial and synergistic antioxidant effects. The best results were obtained with ZN/PVA nanofiber containing 4% TQ and electrosprayed with 2% RS nanoparticles (p ≤ .05). According to the results of the present study, biodegradable ZN/PVA nanofiber containing TQ and electrosprayed with RS nanoparticles can be used as a novel active packaging material in the food industry.

5.
ACS Appl Bio Mater ; 7(3): 1558-1568, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38373341

RESUMO

Ionic liquid (IL) cationic species have recently captivated the attention of pharmacists, biochemists, and biomedical scientists as promising antibacterial agents to deal with the multidrug resistance bacteria crisis. The structure and functional groups of ILs influence their physiochemical properties and biological activities. However, a comprehensive study is required to fully understand the details of the antibacterial activity of ILs carrying various functional groups. Herein, dicationic ILs (DCILs) are reported based on imidazolium rings as efficient antibacterial agents. The DCILs carried various functionalities such as 2-hydroxybutyl (DCIL-1), 2-hydroxy-3-isopropoxypropyl (DCIL-2), 2-hydroxy-3-(methacryloyloxy)propyl (DCIL-3), 2-hydroxy-2-phenylethyl (DCIL-4), and 2-hydroxy-3-phenoxypropyl (DCIL-5). The structure-antibacterial activity relationships of the DCILs against Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) were comprehensively studied through antibacterial tests, morphology analysis, and adhesion tests. The experimental assays revealed an antibacterial efficacy order of DCIL-5 > DCIL-1 > DCIL-4 > DCIL-2 > DCIL-3. The all-atom molecular dynamics (MD) simulation showed a deep permeation of the hydrophobic -OPh functional group of DCIL-5 through the E. coli membrane model in agreement with the experimental observations. Current findings assist scientists in designing new task-specific DCILs for effective interactions with biological membranes for different applications.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/farmacologia , Líquidos Iônicos/química , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química , Relação Estrutura-Atividade , Cátions/química
6.
J Sep Sci ; 46(22): e2300421, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37688348

RESUMO

In the present work, a novel solid-phase microextraction on a screw (MES) was employed to extract cationic dyes (malachite green, methylene blue, and rhodamine B) from food samples and fish breeding pool water. The sulfonated poly(styrene-co-divinylbenzene) was electrophoretically deposited on the surface of the grooves of a screw. Then the screw was placed inside a silicon tube as a holder to create a channel to run a test solution through it. The extracted dyes on the coated screw were eluted by a suitable eluent. High-performance liquid chromatography with an ultraviolet/visible detector was utilized for the separation and analysis of the analytes. The effective parameters of the analyte extraction efficiency were optimized. Under optimum conditions, the limits of detection were 0.15 µg/L, and calibration curves were linear in the range of 0.50-250.00 µg/L, with coefficients of determination > 0.989 for all studied dyes. The relative standard deviations of intra and inter-day (n = 3) were in the range of 2.8%-7.0% and 7.0%-9.5%, respectively. The MES was applied as a simple and repeatable method with acceptable relative recoveries (82.0%-103.0%) for the determination of cationic dyes in grape nectar, ice pop, jelly powder, and fish breeding pool water.

7.
ACS Chem Neurosci ; 13(22): 3168-3179, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36314062

RESUMO

Natural compounds with anti-aggregation capacity are increasingly recognized as viable candidates against neurodegenerative diseases. Recently, the polyphenolic fraction of propolis (PFP), a complex bee product, has been shown to inhibit amyloid aggregation of a model protein especially in the nanosheet form. Here, we examine the aggregation-modulating effects of the PFP nanosheets on α-synuclein (α-syn), an intrinsically disordered protein involved in the pathogenesis of Parkinson's disease. Based on a range of biophysical data including intrinsic and extrinsic fluorescence, circular dichroism (CD) data, and nuclear magnetic resonance spectroscopy, we propose a model for the interaction of α-syn with PFP nanosheets, where the positively charged N-terminal and the middle non-amyloid component regions of α-syn act as the main binding sites with the negatively charged PFP nanosheets. The Thioflavin T (ThT) fluorescence, Congo red absorbance, and CD data reveal a prominent dose-dependent inhibitory effect of PFP nanosheets on α-syn amyloid aggregation, and the microscopy images and MTT assay data suggest that the PFP nanosheets redirect α-syn aggregation toward nontoxic off-pathway oligomers. When preformed α-syn amyloid fibrils are present, fluorescence images show co-localization of PFP nanosheets and ThT, further confirming the binding of PFP nanosheets with α-syn amyloid fibrils. Taken together, our results demonstrate the binding and anti-aggregation activity of PFP nanosheets in a disease-related protein system and propose them as potential nature-based tools for probing and targeting pathological protein aggregates in neurodegenerative diseases.


Assuntos
Própole , alfa-Sinucleína , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Própole/farmacologia , Polifenóis/farmacologia , Agregados Proteicos
8.
ACS Biomater Sci Eng ; 8(10): 4566-4576, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36054652

RESUMO

Asthma is a common chronic lung disease without absolute treatment, and hypersensitivity reactions and type 2 immune responses are responsible for asthma pathophysiology. ADAM10 as a metalloproteinase transmembrane protein is critical for development of Th2 responses, and levamisole as an anthelmintic drug has immunomodulatory effects, which not only regulates ADAM10 activity but also can suppress the bone marrow and neutrophil production. Therefore, in the present study, nanoparticles were used as a levamisole delivery system to reduce bone marrow suppression, and the immunomodulatory and ADAM10 inhibitory effects of levamisole were studied in allergic asthma. Asthmatic mice were treated with PLGA-levamisole nanoparticles. Then, AHR, BALF, and blood cell counts, levels of the IgG1 subclass, total and OVA-specific IgE, IL2, IL-4, IL-5, IL-10, IL-13, IL-17, IL-25, IL-33, INF-γ, and TNF-α, gene expression of FoxP3, T-bet, RORγt, PU.1, GATA3, FcεRII, CysLT1R, eotaxin, and ADAM10, and lung histopathology were evaluated. PLGA-LMHCl with considered characteristics could control airway hyper-responsiveness, eosinophils in the BALF, levels of immunoglobulins, Th2-, Th9-, and Th17-derived cytokines and pivotal genes, eosinophilic inflammation, hyperplasia of the goblet cell, and hyperproduction of mucus and could increase Th1- and Treg-derived cytokines and also pivotal genes. It could also modulate the ADAM10 activity and had no effect on the number of neutrophils in the bloodstream. The novel safe nanodrug had no side effect on the bone marrow to produce neutrophils and could control the allegro-immuno-inflammatory response of asthma.


Assuntos
Asma , Nanopartículas , Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/farmacologia , Fatores de Transcrição Forkhead/uso terapêutico , Imunoglobulina E/farmacologia , Imunoglobulina E/uso terapêutico , Imunoglobulina G/farmacologia , Imunoglobulina G/uso terapêutico , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Interleucina-10/farmacologia , Interleucina-10/uso terapêutico , Interleucina-13/farmacologia , Interleucina-13/uso terapêutico , Interleucina-17/farmacologia , Interleucina-17/uso terapêutico , Interleucina-2/farmacologia , Interleucina-2/uso terapêutico , Interleucina-33/farmacologia , Interleucina-33/uso terapêutico , Interleucina-4/farmacologia , Interleucina-4/uso terapêutico , Interleucina-5/farmacologia , Interleucina-5/uso terapêutico , Levamisol/farmacologia , Levamisol/uso terapêutico , Pulmão/patologia , Proteínas de Membrana , Camundongos , Nanopartículas/uso terapêutico , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/uso terapêutico , Ovalbumina/farmacologia , Ovalbumina/uso terapêutico , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/uso terapêutico
9.
ACS Omega ; 7(35): 30989-31002, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36092616

RESUMO

A macroporous dual-functional acid-base covalent organic polymer catalyst poly(St-VBC)-NH2-SO3H was prepared using high internal phase emulsion polymerization using vinylbenzyl chloride (VBC), styrene (St), and divinylbenzene (DVB) as substrates toluene as a porogenic solvent, and subsequent modification with ethylenediamine and 1,3-propane sultone. The role of various amounts of toluene as the porogenic solvent as well as the amount of 1,3-propane sultone (different ratio of acid/base sites) on the structure of the prepared materials have been carefully investigated. The prepared materials were characterized by Fourier transform infrared (FT-IR), CHNS elemental analysis, energy-dispersive X-ray (EDX), elemental mapping, field emission scanning electron microscopy (FE-SEM), and thermalgravimetric analysis (TGA). The catalytic activity of the poly(St-VBC)-NH2-SO3H series with different acid/base densities was assessed for one-pot cascade C-C bond-forming reactions involving deacetylation-Henry reactions. The poly(St-VBC)-NH2-SO3H(20) sample bearing 1.82 mmol/g of N (base site) and 1.16 mmol/g (acid site) showed the best catalytic activity. The catalyst demonstrated superior activity compared to the homogeneous catalysts, poly(St-DVB)-SO3H+EDA, poly(St-VBC)-NH2+chlorosulfonic acid, and poly(St-DVB)-SO3H+poly(St-VBC)-NH2 as the catalyst system. The optimized catalyst showed excellent catalytic performance with 100% substrate conversion and 100% yield of the final product in the one-pot production of ß-nitrostyrene from benzaldehyde dimethyl acetal under cascade reactions comprising acid-catalyzed deacetalization and base-catalyzed Henry reactions. It was shown that these catalysts were reusable for up to four consecutive runs with a very slight loss of activity. The excellent performance of the catalyst was attributed to the excellent chemical and physical properties of the developed support since it provides an elegant route for preparing site-isolated acid-base dual heterogenized functional groups and preventing their deactivation via chemical neutralization.

10.
RSC Adv ; 12(14): 8719-8730, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35424834

RESUMO

Poor water solubility and low bioavailability are considered as two main factors restricting therapeutic applications of natural polyphenols in relation to various disorders including amyloid-related diseases. Among various strategies developed to overcome these limitations, nanonization has attracted considerable attention. Herein, we compared the potency of bulk and nano forms of the polyphenolic fraction of pomegranate seed (PFPS) for modulating Hen Egg White Lysozyme (HEWL) amyloid fibril formation. Prepared PFPS nanosheets using direct oxidative pyrolysis were characterized by employing a range of spectroscopic and microscopic techniques. We found that the nano form can inhibit the assembly process and disintegrate preformed fibrils of HEWL much more effective than the bulk form of PFPS. Moreover, MTT-based cell viability and hemolysis assays showed the capacity of both bulk and nano forms of PFPS in attenuating HEWL amyloid fibril-induced toxicity, where the nano form was more effective. On the basis of thioflavin T results, a delay in the initiation of amyloid fibril assembly of HEWL appears to be the mechanism of action of PFPS nanosheets. We suggest that the improved efficiency of PFPS nanosheets in modulating the HEWL fibrillation process may be attributed to their increased surface area in accord with the surface-assistance model. Our results may present polyphenol-based nanosheets as a powerful approach for drug design against amyloid-related diseases.

11.
Adv Sci (Weinh) ; 9(2): e2102678, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34796680

RESUMO

Cancer is one of the top life-threatening dangers to the human survival, accounting for over 10 million deaths per year. Bioactive glasses have developed dramatically since their discovery 50 years ago, with applications that include therapeutics as well as diagnostics. A new system within the bioactive glass family, mesoporous bioactive glasses (MBGs), has evolved into a multifunctional platform, thanks to MBGs easy-to-functionalize nature and tailorable textural properties-surface area, pore size, and pore volume. Although MBGs have yet to meet their potential in tumor treatment and imaging in practice, recently research has shed light on the distinguished MBGs capabilities as promising theranostic systems for cancer imaging and therapy. This review presents research progress in the field of MBG applications in cancer diagnosis and therapy, including synthesis of MBGs, mechanistic overview of MBGs application in tumor diagnosis and drug monitoring, applications of MBGs in cancer therapy ( particularly, targeted delivery and stimuli-responsive nanoplatforms), and immunological profile of MBG-based nanodevices in reference to the development of novel cancer therapeutics.


Assuntos
Vidro/química , Neoplasias/diagnóstico , Neoplasias/terapia , Animais , Modelos Animais de Doenças , Hipertermia Induzida/métodos , Camundongos , Nanomedicina/métodos , Neoplasias/imunologia , Fotoquimioterapia/métodos , Terapia Fototérmica/métodos , Porosidade
12.
Adv Colloid Interface Sci ; 294: 102454, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34102390

RESUMO

Efforts to widen the scope of ionic liquids applications across diverse research areas have flourished in the last two decades with developments in understanding and tailoring their physical, chemical, and biological properties. The promising applications of ionic liquids-based materials as antimicrobial systems is due to their ability and flexibility to be tailored in varying sizes, morphologies, and surface charges. Ionic liquids are also considered as greener materials. Common methods for the preparation of ionic liquid-based materials include crosslinking, loading, grafting, and combination of ionic liquids with other polymeric materials. Recent research focuses on the tuning of the biological properties to design novel ionic liquids-based antimicrobial materials. Here, the properties, synthesis and applications of ionic liquids and ionic liquids-based materials are reviewed with focus on antimicrobial activities applied to water treatment, air filtration, food packaging, and anticorrosion.


Assuntos
Anti-Infecciosos , Líquidos Iônicos , Purificação da Água , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Embalagem de Alimentos
13.
RSC Adv ; 11(37): 22544-22555, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35480468

RESUMO

The interlacing of biopolymers and synthetic polymers is a promising strategy to fabricate hydrogel-based tissue scaffolds to biomimic a natural extracellular matrix for cell growth. Herein, open-cellular macroporous 3D scaffolds with a semi-interpenetrating network were fabricated through high internal phase emulsion templating. The scaffolds are prepared by (I) the curing of PEG diacrylate (PEGDAC) and gelatin methacrylate (GelMA) in the continuous aquatic phase of a coconut oil-in-water emulsion stabilized by GelMA nanoparticles, and (II) the removal of the internal phase. The effect of the main contributing parameters such as pH, GelMA content, and GelMA/PEGDAC weight ratio on the emulsion features was investigated systematically. Due to the isoelectric point of GelMA at around pH 6, the GelMA particle (aggregation) size decreased at both sides of pH from 1000 to 100-140 nm because of the increased number of positive and negative charges on GelMA. These GelMA nanoparticles were able to produce stable emulsions with narrowly distributed small emulsion droplets. Moreover, the stability and emulsion droplet size were enhanced and increased, respectively, with GelMA content increasing and GelMA/PEGDAC weight ratio decreasing. These trends lie in the prevented coalescence phenomenon caused by the improved viscosity and likely partially formed network by GelMA chains in the continuous phase. Hence, the following formulation was selected for scaffold preparation: φ oil = 74%, pH = 12, GeMA = 4 wt%, and GelMA/PEGDAC = 10/8. Then, PCL in different contents was infiltrated into the scaffold to balance hydrophilicity and hydrophobicity. The cell culture assay proved that the scaffold with a pore size of 60-180 µm and containing 51.2 wt% GelMA, 10.3 wt% PEG, and PCL 27.2 wt% provided a suitable microenvironment for mouse fibroblast cell (L929) adhesion, growth, and spreading. These results show that this strategy suggests promising culture for tissue engineering applications.

14.
ACS Appl Bio Mater ; 4(4): 3547-3560, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35014440

RESUMO

Among common strategies for amyloid fibrillation inhibition, the use of naturally occurring polyphenols as an efficient therapeutic approach has attracted a growing body of attention. However, the poor water solubility and low bioavailability of these compounds have greatly restricted their clinical application in amyloid-related diseases. Thus, different types of formulations have been developed to overcome these limitations; among them, nanonization appears to be one of the most notable approaches. Herein, we show that the polyphenolic fraction of propolis (PFP), in the nanosheet form (PFP nanosheet), exhibits an improved capacity for amyloid fibrillation inhibition as well as clearance of preformed fibrils of bovine insulin. This increased efficiency is suggested to be related to the aqueous solubility and surface area enhancement as well as surface modifications upon undergoing the nanonization process, which can lead to strong binding with and trapping of protein at the surface of the nanosheets. On the basis of thioflavin T results, it is suggested that although PFP may modulate the fibrillation process via shortening of the lag phase, prolongation of the nucleation phase through interaction with and stabilizing monomeric species is the mechanism of action of PFP nanosheets. We propose that nanonization of natural small molecules can be considered as a powerful approach to improve their anti-amyloidogenic properties and overcome obstacles originating from poor water solubility and low bioavailability of drug candidates relating to neurodegenerative diseases. Taken together, the obtained results may suggest PFP nanosheets as a potential candidate for use against neurological disorders.


Assuntos
Amiloide/antagonistas & inibidores , Materiais Biocompatíveis/farmacologia , Insulina/química , Nanopartículas/química , Polifenóis/farmacologia , Própole/química , Amiloide/metabolismo , Animais , Materiais Biocompatíveis/química , Bovinos , Insulina/metabolismo , Teste de Materiais , Tamanho da Partícula , Polifenóis/química
15.
J Cell Physiol ; 236(5): 4066-4075, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33151570

RESUMO

Controlled-release drug delivery systems are promising platforms in medicine. Among various types of material in drug delivery, hydrogels are interesting ones. They are water-soluble and tissue compatible polymers with a high capacity to carry and release drugs in a controllable manner. In this study, we introduce the synthesis, characterization, and application of an α-amylase responsive hydrogel in controlled drug delivery. The newly synthesized starch-based hydrogels structurally characterized by means of Fourier-transform infrared spectroscopy and scanning electron microscopy. A proapoptotic drug, doxorubicin, was loaded into the hydrogels and the controlled release of the drug was assessed in the presence of α-amylase and ultimately it was evaluated to controlled-drug release in vitro and subsequently in killing cancer cells. Our results highlight the effectiveness of temporal drug delivery using α-amylase responsive hydrogels in killing cancer cells.


Assuntos
Hidrogéis/síntese química , Amido/análogos & derivados , alfa-Amilases/metabolismo , Morte Celular , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier , Amido/metabolismo
16.
PLoS One ; 15(12): e0244296, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362209

RESUMO

There are many reports demonstrating that various derivatives of carbon nanoparticles are effective inhibitors of protein aggregation. As surface structural features of nanoparticles play a key role on modulating amyloid fibrillation process, in the present in vitro study, bovine insulin and hen egg white lysozyme (HEWL) were selected as two model proteins to investigate the reducing effect of graphene oxide quantum dots (GOQDs) on their assembly under amyloidogenic conditions. GOQDs were prepared through direct pyrolysis of citric acid, and the reduction step was carried out using ascorbic acid. The prepared nanoparticles were characterized by UV-Vis, X-ray photoelectron, and FT-IR spectroscopies, transmission electron and atomic force microscopies, zeta potential measurement, and Nile red fluorescence assay. They showed the tendencies to modulate the assembly of the proteins through different mechanisms. While GOQDs appeared to have the capacity to inhibit fibrillation, the presence of reduced GOQDs (rGOQDs) was found to promote protein assembly via shortening the nucleation phase, as suggested by ThT fluorescence data. Moreover, the structures produced in the presence of GOQDs or rGOQDs were totally nontoxic. We suggest that surface properties of these particles may be part of the differences in their mechanism(s) of action.


Assuntos
Grafite/química , Grafite/metabolismo , Oxigênio/metabolismo , Amiloide/química , Amiloide/metabolismo , Proteínas Amiloidogênicas/química , Amiloidose/metabolismo , Animais , Bovinos , Insulina/química , Modelos Biológicos , Muramidase/química , Nanopartículas/química , Oxigênio/fisiologia , Agregados Proteicos/efeitos dos fármacos , Agregados Proteicos/fisiologia , Pontos Quânticos/química , Propriedades de Superfície/efeitos dos fármacos
17.
Colloids Surf B Biointerfaces ; 181: 244-251, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31151037

RESUMO

In this paper, we report the use of amphiphilic crosslinked starch nanoparticles (CSTNs) as biocompatible, biodegradable and effective stabilizer for Pickering emulsion formulation. The nearly monodispersed CSTNs (˜140 nm) were synthesized through alkali-freezing method followed by crosslinking using citric acid. The prepared nanoparticles were characterized by field emission scanning electron microscopy, zeta-potential measurements, dynamic light scattering, and Fourier transform infrared spectroscopy. The efficacy of the CSTNs toward the stability, the oil droplet size distribution and the surface area moment mean diameter (d3,2) of sunflower oil-in-water emulsions were then assessed as a function of pH. Increase in pH from 3 to 5 and 7.4 led to an enhance in the emulsion stability, decrease in d3,2 and narrowing of the size distribution of emulsions droplets. Moreover, the abundance of nanoparticles increased with pH so that the surface coverage for pH 3, 5 and 7.4 were calculated 10.6, 14.8 and 22.2%, respectively. In vitro controlled release studies showed that the encapsulated curcumin, as a lipophilic and therapeutic compound, into the Pickering emulsion can be tuned by pH of the release media; drug release increases with pH. Collectively, the facile preparation of emulsions stabilized by solid particles derived from biocompatible and renewable resources along with the pH responsivity of these emulsions make them promising drug carriers to treat gastrointestinal tissue disorders via oral drug delivery.


Assuntos
Nanopartículas/química , Amido/química , Tensoativos/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Emulsões/síntese química , Emulsões/química , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Propriedades de Superfície , Tensoativos/síntese química
18.
J Mater Sci Mater Med ; 29(11): 165, 2018 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-30392146

RESUMO

In this work, for the first time, zein nanofiber mats loaded with ethanol extracts propolis (EEP) were successfully produced. Raw propolis was extracted by ethanol 70% and total flavonoid content was estimated by aluminum chloride colorimetric method. The anti-microbial activity of the EEP was investigated and compared with amoxicillin via zone of inhibition test against various microorganisms included gram-positive: Staphylococcus aureus, Staphylococcus epidermidis, gram-negative: Escherichia coli, Salmonella enterica, Pseudomonas aeruginosa and fungus: Candida albicans. The EEP showed activity only against gram-positive types and fungus, whereas no activity was observed against gram-negative types. Electrospun zein nanofiber was obtained from 70% ethanolic solutions included different content of zein, 15-40 wt.%. The SEM images revealed a smooth ribbon-like morphology for zein nanofibers without any beads in zein content more than 25 wt.%. As well, the SEM images of electrospun zein nanofibers containing different content of propolis (0-40 wt.% based on the zein content) disclosed the increase in the average size of fibers with propolis content from 264 to 419 nm. This increasing was more probably due to the reduction in ionic conductivity of zein solutions with propolis content. The proteinic nature of zein along with the antimicrobial activity and the herbal nature of the propolis make the obtained mats promising candidate for more evaluation in wound healing study.


Assuntos
Anti-Infecciosos/farmacologia , Nanofibras , Própole/química , Zeína/química , Anti-Infecciosos/química , Bactérias/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Técnicas Eletroquímicas , Teste de Materiais , Testes de Sensibilidade Microbiana
19.
Dent Mater ; 34(6): 851-867, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29678327

RESUMO

OBJECTIVE: Quaternary ammonium compounds (QACs) represent one of the most effective classes of disinfectant agents in dental materials and resin nanocomposites. This reviews aims to give a wide overview on the research in the field of antibacterial QACs in dental materials and nanocomposites. METHOD: An introduction to dental materials components as well as the microorganisms and methods of evaluation for the antimicrobial assays are presented. Then, the properties and synthesis route of QACs, as monomer and filler, are shown. Finally, antimicrobial monomers and fillers, specifically those contain quaternary ammonium salts (QASs), in dental materials are reviewed. RESULTS: QACs have been used as monomer and micro/nanofiller in restorative dentistry. They possess one or more methacrylate functional groups to participate in polymerization reactions. QACs with multiple methacrylate groups can also be used as crosslinking agents. Furthermore, QACs with chain length from ∼12 to 16 have higher antimicrobial activity in cured dental resins. In general, increasing the chain length leads to a threshold value (critical point) and then it causes decrease in the antimicrobial activity. SIGNIFICANCE: The current state of the art of dental materials and resin nanocomposites includes a wide variety of antimicrobial materials. Among them, QACs presents low cytotoxicity and excellent long-term antimicrobial activity without leaching out over time.


Assuntos
Antibacterianos/farmacologia , Materiais Dentários/farmacologia , Compostos de Amônio Quaternário/farmacologia , Antibacterianos/química , Materiais Dentários/química , Humanos , Compostos de Amônio Quaternário/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...