Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-461041

RESUMO

Some recent SARS-CoV-2 variants appear to have increased transmissibility than the original strain. An underlying mechanism could be the improved ability of the variants to bind receptors on target cells and infect them. In this study, we provide atomic-level insight into the binding of the receptor binding domain (RBD) of the wild-type SARS-CoV-2 spike protein and its single (N501Y), double (E484Q, L452R) and triple (N501Y, E484Q, L452R) mutated variants to the human ACE2 receptor. Using extensive all-atom molecular dynamics simulations and advanced free energy calculations, we estimate the associated binding affinities and binding hotspots. We observe significant secondary structural changes in the RBD of the mutants, which lead to different binding affinities. We find higher binding affinities of the double (E484Q, L452R) and triple (N501Y, E484Q, L452R) mutated variants than the wild type and the N501Y variant, which could contribute to the higher transmissibility of recent variants containing these mutations.

2.
Chemistry ; 27(26): 7418-7433, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33404126

RESUMO

Fourteen new RuII -arene (p-cymene/benzene) complexes (C1-C14) have been synthesized by varying the N-terminal substituent in the furoylthiourea ligand and satisfactorily characterized by using analytical and spectroscopic techniques. Electrostatic potential maps predicted that the electronic effect of the substituents was mostly localized, with some influence seen on the labile chloride ligands. The structure-activity relationships of the Ru-p-cymene and Ru-benzene complexes showed opposite trends. All the complexes were found to be highly toxic towards IMR-32 cancer cells, with C5 (Ru-p-cymene complex containing C6 H2 (CH3 )3 as N-terminal substituent) and C13 (Ru-benzene complex containing C6 H4 (CF3 ) as N-terminal substituent) showing the highest activity among each set of complexes, and hence they were chosen for further study. These complexes showed different behavior in aqueous solutions, and were also found to catalytically oxidize glutathione. They also promoted cell death by apoptosis and cell cycle arrest. Furthermore, the complexes showed good binding ability with the receptors Pim-1 kinase and vascular endothelial growth factor receptor 2, commonly overexpressed in cancer cells.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Complexos de Coordenação/toxicidade , Relação Estrutura-Atividade , Fator A de Crescimento do Endotélio Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA