Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 1001454, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504828

RESUMO

Potato, the world's most popular crop is reported to provide a food source for nearly a billion people. It is prone to a number of biotic stressors that affect yield and quality, out of which Potato Virus Y (PVY) occupies the top position. PVY can be transmitted mechanically and by sap-feeding aphid vectors. The application of insecticide causes an increase in the resistant vector population along with detrimental effects on the environment; genetic resistance and vector-virus control are the two core components for controlling the deadly PVY. Using transcriptomic tools together with differential gene expression and gene discovery, several loci and genes associated with PVY resistance have been widely identified. To combat this virus we must increase our understanding on the molecular response of the PVY-potato plant-aphid interaction and knowledge of genome organization, as well as the function of PVY encoded proteins, genetic diversity, the molecular aspects of PVY transmission by aphids, and transcriptome profiling of PVY infected potato cultivars. Techniques such as molecular and bioinformatics tools can identify and monitor virus transmission. Several studies have been conducted to understand the molecular basis of PVY resistance/susceptibility interactions and their impact on PVY epidemiology by studying the interrelationship between the virus, its vector, and the host plant. This review presents current knowledge of PVY transmission, epidemiology, genome organization, molecular to bioinformatics responses, and its effective management.

2.
Dalton Trans ; 51(24): 9302-9313, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35670314

RESUMO

We present herein a family of molecular cis-[FeII(X-PPMA)2(NCS)2]·H2O [4-X-N-(phenyl(pyridin-2-yl)methylene)aniline; X-PPMA; X = -Cl (1), -Br (2), and -CH3 (3)] complexes that exhibit spin crossover behaviour above room temperature. Judiciously designed bidentate N-donor Schiff bases of 2-benzoylpyridine and para-substituted anilines in combination with Fe(NCS)2 were used for the synthesis of complexes 1-3. The relatively strong ligand field of the Schiff bases stabilises the low spin state of iron(II) up to 300 K which is evident from magnetic measurements, room temperature Mössbauer spectra and crystallographic bond/angle distortion parameters. Interestingly, complexes 1-3 crystallize in a tetragonal system with either a P43212 or P41212 chiral space group from achiral building units due to the supramolecular helical arrangements of molecules through intermolecular (pyridine)C-H⋯C(NCS) interactions in the crystalline state. Complexes 1 and 2 exhibit complete, gradual and slightly irreversible spin crossover behaviour in the temperature range of 300-500 K with equilibrium temperatures (T1/2) 375 K (1) and 380 K (2). The spin state evolution of iron(II) in complexes 1 and 2 is monitored between 150 K and 450 K through variable temperature crystallographic studies in the warming mode. The structural data are in good agreement with the 94% (1) and 87% (2) high spin conversion of iron(II) at 450 K. At a high temperature (450 K), some minor irreversible ligand motion is noticed in complexes 1 and 2, in addition to a complete solvent loss that may induce the slight irreversibility of the spin crossover. On the other hand, complex 3 shows a complete and gradual spin crossover in the temperature range of 10-475 K with strong irreversible features. The equilibrium temperatures obtained upon first warming (T1/2↑) and second cooling (T1/2↓) are 375 K and 200 K, respectively. In complex 3, the loss of a water molecule triggers strong deviations in the spin crossover behaviour. Moreover, dehydrated complex 3 exhibits photoswitching LIESST effect with a relaxation temperature T(LIESST) = 60 K.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 189: 176-182, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28818764

RESUMO

Reported herein the synthesis, characterization and biologically important zinc ion binding propensity of a weakly fluorescent chemosensor, 4-methyl-2,6-bis((E)-(2-(4-phenylthiazol-2-yl)hydrazono)methyl)phenol (1). 1H NMR spectroscopic titration experiment reveals the binding knack of 1 to the essential Zn2+. The photo-physical studies of 1 exhibit an enhancement in the fluorescence by several folds upon binding with the zinc ions attributed to PET-off process, with a binding constant value of 5.22×103M-1. 1 exhibits an excellent detection range for Zn2+ with lower detection limit value of 2.31×10-8M. The selectivity of 1 was studied with various mono and divalent metal cations and it was observed that most cations either quenches the fluorescence or remains unchanged except for Cd2+, which shows a slight enhancement in fluorescence intensity of 1. The ratiometric displacement of Cd2+ ions by Zn2+ ions shows an excellent selectivity towards in-situ detection of Zn2+ ions. Photo-physical studies also support the reversible binding of 1 to Zn2+ ions having on and off mechanism in presence of EDTA. Such recognition of the biologically important zinc ions finds potential application in live cell imaging.


Assuntos
Corantes Fluorescentes/química , Zinco/análise , Ácido Edético/química , Cinética , Limite de Detecção , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...