Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38592924

RESUMO

Serial sectioning and 3D image reconstruction methods were applied to elucidate the structures of the apices of root vascular cylinders (VCs) in taxa of the Poaceae: Zea mays "Honey Bantam", Z. mays ssp. mexicana, Hordeum vulgare and Oryza sativa. The primary and nodal roots were investigated. Observations were performed using high-quality sectioning and 3D image-processing techniques improved and developed by the authors. We found that a quiescent uniseriate plerome was located at the most distal part of each VC. Vascular initials were located immediately basipetally to the plerome as a specific uniseriate layer that could be classified into central and peripheral initials that produced all the cells in the VC. No supplying of cells from the plerome to the vascular initials was observed. Numerical analysis revealed a "boundary point" along the root axis where the rate of increase of the vascular cell number markedly declined, and the VC diameter, number of vascular cells, and number of late-maturing metaxylem vessels (LMXs) at that point showed a similar relationship among the taxa and the types of roots examined (primary vs. nodal). The plerome and vascular initials layer can be considered independent after seed germination in these taxa. A boundary point at which procambial cell proliferation sharply declined was identified. The diameters of the VCs, number of LMXs, and number of vascular cells at the boundary point were found to be strongly related to each other.

2.
Appl Plant Sci ; 11(6): e11531, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38106532

RESUMO

Premise: Previously we described methods for generating three-dimensional (3D) virtual reconstructions of plant tissues from transverse thin sections. Here, we report the applicability of longitudinal sections and improved image-processing steps that are simpler to perform and utilize free applications. Methods: In order to obtain improved digital images and a virtual 3D object (cuboid), GIMP 2.10 and ImageJ 2.3.0 running on a laptop computer were used. Sectional views of the cuboid and 3D visualization were realized with use of the plug-ins "Volume Viewer" and "3D Viewer" in ImageJ. Results: A 3D object was constructed and sectional views along several cutting planes were generated. The 3D object consisted of selected tissues inside the cuboid that were extracted and visualized from the original section data, and an animated video of the 3D construct was also produced. Discussion: Virtual cuboids can be constructed by stacking longitudinal images along the transverse depth direction or stacking transverse images vertically along the organ axis, with both generating similar 3D objects. Which to use depends on the purpose of the investigation: if the vertical cell structures need close examination, the former method may be better, but for more general spatial evaluations or for evaluation of organs over longer tissue distances than can be accommodated with longitudinal sectioning, the latter method should be chosen.

3.
Appl Plant Sci ; 8(5): e11347, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32477843

RESUMO

PREMISE: Young plant roots share a common architecture: a central vascular cylinder surrounded by enveloping cylinders of ground and dermal tissue produced by an apical promeristem. Roots with closed apical organization can be studied to explore how ontogeny is managed. The analysis of transverse and longitudinal sections has been the most useful approach for this, but suffers from limitations. We developed a new method that utilizes digital photography of transverse sections and three-dimensional (3D) computer virtual reconstructions to overcome the limitations of other techniques. METHODS: Serial transverse sections of teosinte root tips (Zea mays subsp. mexicana) were used to construct longitudinal images, 3D images, and an animated 3D model. The high-resolution, high-contrast, and low-distortion sectioning method developed previously by the authors enabled high-quality virtual image construction with the aid of a standard laptop computer. RESULTS: The resulting 3D images allowed greater insight into root tissue ontogeny and organization, especially specific cellular structures such as histogen layers, xylem vessels, pericycle, and meristematic initials. DISCUSSION: This new method has advantages over confocal laser scanning microscopy and magnetic resonance imaging for visualizing anatomy, and includes a procedure to correct for sectioning distortion. An additional advantage of this method, developed to produce better knowledge about the developmental anatomy of procambium in roots, is its applicability to a wide range of anatomical subjects.

4.
Plants (Basel) ; 9(3)2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32197442

RESUMO

Root apical meristem histological organization in Zea mays has been carefully studied previously. Classical histology describes its system as having a "closed organization" and a development of xylem that conforms to predictable rules. Among the first cell types to begin differentiation are late-maturing metaxylem (LMX) vessels. As part of a larger study comparing domestic maize root development to a wild subspecies of Z. mays (teosinte), we encountered a metaxylem development abnormality in a small percentage of our specimens that begged further study, as it interrupted normal maturation of LMX. Primary root tips of young seedlings of Zea mays ssp. mexicana were fixed, embedded in appropriate resins, and sectioned for light and transmission electron microscopy. Longitudinal and serial transverse sections were analyzed using computer imaging to determine the position and timing of key xylem developmental events. We observed a severe abnormality of LMX development among 3.5% of the 227 mexicana seedlings we screened. All LMX vessel elements in these abnormal roots collapsed and probably became non-functional shortly after differentiation began. Cytoplasm and nucleoplasm in the abnormal LMX elements became condensed and subdivided into irregularly-shaped "macrovesicles" as their cell walls collapsed inward. We propose that these seedlings possibly suffered from a mutation that affected the timing of the programmed cell death (PCD) that is required to produce functional xylem vessels, such that autolysis of the cytoplasm was prematurely executed, i.e., prior to the development and lignification of secondary walls.

5.
Plants (Basel) ; 8(6)2019 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-31181793

RESUMO

Classical histology describes the histological organization in Zea mays as having a "closed organization" that differs from Arabidopsis with the development of xylem conforming to predictable rules. We speculated that root apical meristem organization in a wild subspecies of Z. mays (a teosinte) would differ from a domestic sweetcorn cultivar ('Honey Bantam'). Careful comparison could contribute to understanding how evolutionary processes and the domestication of maize have affected root development. Root tips of seedlings were prepared and sectioned for light microscopy. Most sections were treated with RNase before staining to increase contrast between the walls and cytoplasm. Longitudinal and serial transverse sections were analyzed using computer imaging to determine the position and timing of key xylem developmental events. Metaxylem development in mexicana teosinte differed from sweetcorn only in that the numbers of late-maturing metaxylem vessels in the latter are typically two-fold greater and the number of cells in the transverse section of procambium were greater in the latter, but parenchymatous cell sizes were not statistically different. Promeristems of both were nearly identical in size and organization, but did not operate quite as previously described. Mitotic activity was rare in the quiescent centers, but occasionally a synchronized pulse of mitoses was observed there. Our reinterpretation of histogen theory and procambium development should be useful for future detailed studies of regulation of development, and perhaps its evolution, in this species.

6.
Protoplasma ; 251(5): 1141-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24585069

RESUMO

Because it has a very large, very rapidly growing primary root, we evaluated giant maize (Zea mays var. Cuscoensis) as a model organism for root research. Granular inclusions are a common feature of cells in many organisms, but they are not common in root meristems. We here report the presence of granules in root tip cells of giant maize. Seeds were germinated at 20 °C in sterile conditions. Four to 5-day-old primary roots were fixed, embedded, and sectioned for light and electron microscopy. Granules (1-2 µm) were observed in small vacuoles in all cell types of the apical meristem zone and mainly in parenchyma cells of the procambium in the primary meristem zone. Some sections were treated with ribonuclease and/or proteinase and then stained with toluidine blue, methyl green pyronin, or Coomassie brilliant blue. The results were used to determine that the granules were composed primarily of RNA and protein. In electron micrographs, consistent with the enzyme experiment results, granules appeared to be dense aggregates of polyribosomes and rough endoplasmic reticulum. They formed first in the cytosol, then invaginated into an adjacent vacuole. The granules are apparently ephemeral and therefore may not have a function other than being subject to autolysis. We speculate that they are part of a previously undescribed ribophagy system that operates during rapid cell growth and differentiation to regulate translation and recycle granule components.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Meristema/citologia , Raízes de Plantas/citologia , Vacúolos/metabolismo , Zea mays/citologia , Autofagia , Câmbio/citologia , Retículo Endoplasmático Rugoso/metabolismo , Microscopia Eletrônica de Transmissão , Raízes de Plantas/crescimento & desenvolvimento , Polirribossomos/metabolismo , Coloração e Rotulagem
7.
Am J Bot ; 95(7): 782-92, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21632404

RESUMO

Cellular degeneration is essential for many developmental and stress acclimation processes. Undifferentiated parenchymatous cells in the central vascular cylinder of pea primary roots degenerate under hypoxic conditions created by flooding at temperatures >15°C, forming a long vascular cavity that seems to provide a conduit for longitudinal oxygen transport in the roots. We show that specific changes in the cell wall ultrastructure accompanied previously detected cytoplasmic and organellar degradation in the cavity-forming roots. The degenerating cells had thinner primary cell walls, less electron-dense middle lamellae, and less abundant cell wall homogalacturonans in altered patterns, compared to healthy cells of roots grown under cold, nonflooded conditions. Cellular breakdown and changes in wall ultrastructure, however, remained confined to cells within a 50-µm radius around the root center, even after full development of the cavity. Cells farther away maintained cellular integrity and had signs of wall synthesis, perhaps from tight regulation of wall metabolism over short distances. These observations suggest that the cell degeneration might involve programmed cell death. We also show that warm, nonflooded or cold, flooded conditions that typically do not induce vascular cavity formation can also induce variations in cell wall ultrastructure.

8.
Ann Bot ; 97(5): 895-902, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16533830

RESUMO

BACKGROUND AND AIMS: Pea (Pisum sativum) primary roots form long vascular cavities when grown under wet or flooded conditions at 25 degrees C. It is thought that the cavities are a form of aerenchyma. At 25 degrees C short roots continue to grow after flooding. After roots reach 10 cm long flooding causes rapid cessation of growth, and root tips often become curled. In longer roots the cavities do not extend into the base of the roots, perhaps rendering them ineffective as aerenchyma. It was hypothesized that the resulting growth arrest was due to programmed cell death (PCD) rather than necrosis. METHODS AND KEY RESULTS: Histological examination by light microscope showed that some cells in the primary meristem (elongation) zone of the primary root tips had morphological abnormalities, including misshapen and fragmented nuclei, and cytoplasmic shrinking and fragmentation. Transmission electron microscopy revealed lobing, invagination and chromatin aggregation in nuclei. The affected cells were positive for terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling. Extracted DNA formed a "DNA ladder" during electrophoresis. Cell death usually began in procambium at one or two protoxylem poles and seemed to spread out to nearby tissues, which asymmetrically inhibited growth and resulted in tip curling. CONCLUSIONS: The above are symptoms of apoptosis-like PCD. Programmed root tip death may rapidly reduce oxygen demand and sink strength, allowing more rapid diversion of resources to lateral roots growing in more permissive conditions.


Assuntos
Morte Celular/fisiologia , Meristema/fisiologia , Pisum sativum/fisiologia , Raízes de Plantas/fisiologia , Água/fisiologia , Núcleo Celular/ultraestrutura , Fragmentação do DNA , Meristema/citologia , Pisum sativum/citologia , Pisum sativum/crescimento & desenvolvimento , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...