Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21267633

RESUMO

SARS-CoV-2 surveillance is crucial to identify variants with altered epidemiological properties. Wastewater-based epidemiology (WBE) provides an unbiased and complementary approach to sequencing individual cases. Yet, national WBE surveillance programs have not been widely implemented and data analyses remain challenging. We deep-sequenced 2,093 wastewater samples representing 95 municipal catchments, covering >57% of Austrias population, from December 2020 to September 2021. Our Variant Quantification in Sewage pipeline designed for Robustness (VaQuERo) enabled us to deduce variant abundance from complex wastewater samples and delineate the spatiotemporal dynamics of the dominant Alpha and Delta variants as well as regional clusters of other variants of concern. These results were cross validated by epidemiological records of >130,000 individual cases. Finally, we provide a framework to predict emerging variants de novo and infer variant-specific reproduction numbers from wastewater. This study demonstrates the power of national-scale WBE to support public health and promises particular value for countries without dense individual monitoring. Graphical Abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=165 SRC="FIGDIR/small/21267633v1_ufig1.gif" ALT="Figure 1"> View larger version (49K): org.highwire.dtl.DTLVardef@1044af0org.highwire.dtl.DTLVardef@d3fe2borg.highwire.dtl.DTLVardef@1d3bfa1org.highwire.dtl.DTLVardef@c9fc95_HPS_FORMAT_FIGEXP M_FIG C_FIG

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21253251

RESUMO

Several systemic factors indicate, that worldwide herd immunity against COVID-19 will probably not be achieved in 2021. Vaccination programs are limited by availability of doses, the number of people already infected is still too low to have a disease preventing impact and new emerging variants of the virus seem to partially neglect developed antibodies from previous infections. Nevertheless, after one year of COVID-19 observing high numbers of reported cases in most European countries, we might expect that the immunization level should have an impact on the spread of SARS-CoV-2. We used an agent-based simulation model to reproduce the COVID-19 pandemic in Austria to estimate the immunization level of the population as of February 2021. We ran several simulations of an uncontrolled epidemic wave with varying initial immunization scenarios to assess the effect on the effective reproduction number. We also used a classic differential equation SIR-model to cross-validate the simulation model. As of February 2021, 14.7% of the Austrian population has been affected by a SARS-CoV-2 infection which causes a 9% reduction of the effective reproduction number and a 24.7% reduction of the prevalence peak compared to a fully susceptible population. This estimation is now recomputed on a regular basis to publish model based analysis of immunization level in Austria also including the fast growing effects of vaccination programs. This provides substantial information for decision makers to evaluate the necessity of NPI-measures based on the estimated impact of natural and vaccinated immunization.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20098970

RESUMO

BackgroundMany countries have already gone through several infection waves and mostly managed to successfully stop the exponential spread of SARS-CoV-2 through bundles of restrictive measures. Still, the danger of further waves of infections is omnipresent and it is apparent that every containment policy must be carefully evaluated and possibly replaced by a different, less restrictive policy, before it can be lifted. Tracing of contacts and consequential breaking of infection chains is a promising strategy to help containing the disease, although its precise impact on the epidemic is unknown. ObjectiveIn this work we aim to quantify the impact of tracing on the containment of the disease and investigate the dynamic effects involved. DesignWe developed an agent-based model that validly depicts the spread of the disease and allows for exploratory analysis of containment policies. We apply this model to quantify the impact of divverent variants of contact tracing in Austria and to derive general conclusions on contract tracing. ResultsThe study displays that strict tracing can supplement up to 5% reduction of infectivity and that household quarantine comes at the smallest price regarding preventively quarantined people. LimitationsThe results are limited by the validity of the modeling assumptions, model parameter estimates, and the quality of the parametrization data. ConclusionsThe study shows that tracing is indeed an efficient measure to keep case numbers low but comes at a high price if the disease is not well contained. Therefore, contact tracing must be executed strictly and adherence within the population must be held up to prevent uncontrolled outbreaks of the disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...