Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Soil Ecol ; 1962024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38463139

RESUMO

Remediation methods for soil contaminated with poly- and perfluoroalkyl substances (PFAS) are needed to prevent their leaching into drinking water sources and to protect living organisms in the surrounding environment. In this study, the efficacy of processed and amended clays and carbons as soil amendments to sequester PFAS and prevent leaching was assessed using PFAS-contaminated soil and validated using sensitive ecotoxicological bioassays. Four different soil matrices including quartz sand, clay loam soil, garden soil, and compost were spiked with 4 PFAS congeners (PFOA, PFOS, GenX, and PFBS) at 0.01-0.2 µg/mL and subjected to a 3-step extraction method to quantify the leachability of PFAS from each matrix. The multistep extraction method showed that PFAS leaching from soil was aligned with the total carbon content in soil, and the recovery was dependent on concentration of the PFAS. To prevent the leaching of PFAS, several sorbents including activated carbon (AC), calcium montmorillonite (CM), acid processed montmorillonite (APM), and organoclays modified with carnitine, choline, and chlorophyll were added to the four soil matrices at 0.5-4 % w/w, and PFAS was extracted using the LEAF method. Total PFAS bioavailability was reduced by 58-97 % by all sorbents in a dose-dependent manner, with AC being the most efficient sorbent with a reduction of 73-97 %. The water leachates and soil were tested for toxicity using an aquatic plant (Lemna minor) and a soil nematode (Caenorhabditis elegans), respectively, to validate the reduction in PFAS bioavailability. Growth parameters in both ecotoxicological models showed a dose-dependent reduction in toxicity with value-added growth promotion from the organoclays due to added nutrients. The kinetic studies at varying time intervals and varying pHs simulating acidic rain, fresh water, and brackish water suggested a stable sorption of PFAS on all sorbents that fit the pseudo-second-order for up to 21 days. Contaminated soil with higher than 0.1 µg/mL PFAS may require reapplication of soil amendments every 21 days. Overall, AC showed the highest sorption percentage of total PFAS from in vitro studies, while organoclays delivered higher protection in ecotoxicological models (in vivo). This study suggests that in situ immobilization with soil amendments can reduce PFAS leachates and their bioavailability to surrounding organisms. A combination of sorbents may facilitate the most effective remediation of complex soil matrices containing mixtures of PFAS and prevent leaching and uptake into plants.

2.
Environ Pollut ; 347: 123762, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38479705

RESUMO

Toxic substances, such as polycyclic aromatic hydrocarbons (PAHs) and heavy metals, can accumulate in soil, posing a risk to human health and the environment. To reduce the risk of exposure, rapid identification and remediation of potentially hazardous soils is necessary. Adsorption of contaminants by activated carbons and clay materials is commonly utilized to decrease the bioavailability of chemicals in soil and environmental toxicity in vitro, and this study aims to determine their efficacy in real-life soil samples. Two ecotoxicological models (Lemna minor and Caenorhabditis elegans) were used to test residential soil samples, known to contain an average of 5.3, 262, and 9.6 ppm of PAHs, lead, and mercury, for potential toxicity. Toxicity testing of these soils indicated that 86% and 58% of soils caused ≤50% inhibition of growth and survival of L. minor and C. elegans, respectively. Importantly, 3 soil samples caused ≥90% inhibition of growth in both models, and the toxicity was positively correlated with levels of heavy metals. These toxic soil samples were prioritized for remediation using activated carbon and SM-Tyrosine sorbents, which have been shown to immobilize PAHs and heavy metals, respectively. The inclusion of low levels of SM-Tyrosine protected the growth and survival of L. minor and C. elegans by 83% and 78%, respectively from the polluted soil samples while activated carbon offered no significant protection. These results also indicated that heavy metals were the driver of toxicity in the samples. Results from this study demonstrate that adsorption technologies are effective strategies for remediating complex, real-life soil samples contaminated with hazardous pollutants and protecting natural soil and groundwater resources and habitats. The results highlight the applicability of these ecotoxicological models as rapid screening tools for monitoring soil quality and verifying the efficacy of remediation practices.


Assuntos
Araceae , Metais Pesados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Animais , Humanos , Argila , Caenorhabditis elegans , Carvão Vegetal , Metais Pesados/toxicidade , Metais Pesados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo/química , Tirosina , Poluentes do Solo/análise
3.
Environ Sci Pollut Res Int ; 31(14): 21781-21796, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38396181

RESUMO

Pesticides are commonly found in the environment and pose a risk to target and non-target species; therefore, employing a set of bioassays to rapidly assess the toxicity of these chemicals to diverse species is crucial. The toxicity of nine individual pesticides from organophosphate, organochlorine, phenylurea, dinitroaniline, carbamate, and viologen chemical classes and a mixture of all the compounds were tested in three bioassays (Hydra vulgaris, Lemna minor, and Caenorhabditis elegans) that represent plant, aquatic, and soil-dwelling species, respectively. Multiple endpoints related to growth and survival were measured for each model, and EC10 and EC50 values were derived for each endpoint to identify sensitivity patterns according to chemical classes and target organisms. L. minor had the lowest EC10 and EC50 values for seven and five of the individual pesticides, respectively. L. minor was also one to two orders of magnitude more sensitive to the mixture compared to H. vulgaris and C. elegans, where EC50 values were calculated to be 0.00042, 0.0014, and 0.038 mM, respectively. H. vulgaris was the most sensitive species to the remaining individual pesticides, and C. elegans consistently ranked the least sensitive to all tested compounds. When comparing the EC50 values across all pesticides, the endpoints of L. minor were correlated with each other while the endpoints measured in H. vulgaris and C. elegans were clustered together. While there was no apparent relationship between the chemical class of pesticide and toxicity, the compounds were more closely clustered based on target organisms (herbicide vs insecticide). The results of this study demonstrate that the combination of these plant, soil, and aquatic specie can serve as representative indicators of pesticide pollution in environmental samples.


Assuntos
Araceae , Praguicidas , Animais , Praguicidas/toxicidade , Praguicidas/química , Caenorhabditis elegans , Carbamatos/toxicidade , Organofosfatos , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...