Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 367(5): 1312-29, 2007 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-17316684

RESUMO

Muscle myosin heavy chain (MHC) rod domains intertwine to form alpha-helical coiled-coil dimers; these subsequently multimerize into thick filaments via electrostatic interactions. The subfragment 2/light meromyosin "hinge" region of the MHC rod, located in the C-terminal third of heavy meromyosin, may form a less stable coiled-coil than flanking regions. Partial "melting" of this region has been proposed to result in a helix to random-coil transition. A portion of the Drosophila melanogaster MHC hinge is encoded by mutually exclusive alternative exons 15a and 15b, the use of which correlates with fast (hinge A) or slow (hinge B) muscle physiological properties. To test the functional significance of alternative hinge regions, we constructed transgenic fly lines in which fast muscle isovariant hinge A was switched for slow muscle hinge B in the MHC isoforms of indirect flight and jump muscles. Substitution of the slow muscle hinge B impaired flight ability, increased sarcomere lengths by approximately 13% and resulted in minor disruption to indirect flight muscle sarcomeric structure compared with a transgenic control. With age, residual flight ability decreased rapidly and myofibrils developed peripheral defects. Computational analysis indicates that hinge B has a greater coiled-coil propensity and thus reduced flexibility compared to hinge A. Intriguingly, the MHC rod with hinge B was approximately 5 nm longer than myosin with hinge A, consistent with the more rigid coiled-coil conformation predicted for hinge B. Our study demonstrates that hinge B cannot functionally substitute for hinge A in fast muscle types, likely as a result of differences in the molecular structure of the rod, subtle changes in myofibril structure and decreased ability to maintain sarcomere structure in indirect flight muscle myofibrils. Thus, alternative hinges are important in dictating the distinct functional properties of myosin isoforms and the muscles in which they are expressed.


Assuntos
Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiologia , Subfragmentos de Miosina/genética , Subfragmentos de Miosina/fisiologia , Processamento Alternativo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Modelos Biológicos , Dados de Sequência Molecular , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/ultraestrutura , Músculo Esquelético/química , Músculo Esquelético/ultraestrutura , Cadeias Pesadas de Miosina/genética , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Transgenes
2.
Gene Expr Patterns ; 7(4): 413-22, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17194628

RESUMO

We show that a 2.6kb fragment of the muscle myosin heavy-chain gene (Mhc) of Drosophila melanogaster (containing 458 base pairs of upstream sequence, the first exon, the first intron and the beginning of the second exon) drives expression in all muscles. Comparison of the minimal promoter to Mhc genes of 10 Drosophila species identified putative regulatory elements in the upstream region and in the first intron. The first intron is required for expression in four small cells of the tergal depressor of the trochanter (jump) muscle and in the indirect flight muscle. The 3'-end of this intron is important for Mhc transcription in embryonic body wall muscle and contains AT-rich elements that are protected from DNase I digestion by nuclear proteins of Drosophila embryos. Sequences responsible for expression in embryonic, adult body wall and adult head muscles are present both within and outside the intron. Elements important for expression in leg muscles and in the large cells of the jump muscle flank the intron. We conclude that multiple transcriptional regulatory elements are responsible for Mhc expression in specific sets of Drosophila muscles.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Músculos/metabolismo , Cadeias Pesadas de Miosina/genética , Elementos Reguladores de Transcrição , Região 5'-Flanqueadora , Animais , Animais Geneticamente Modificados , Composição de Bases , Pegada de DNA , Desoxirribonuclease I/metabolismo , Drosophila melanogaster/embriologia , Embrião não Mamífero/metabolismo , Feminino , Íntrons , Masculino , Músculos/embriologia , Proteínas Nucleares/metabolismo , Especificidade de Órgãos , Análise de Sequência de DNA
3.
J Biol Chem ; 278(19): 17475-82, 2003 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-12606545

RESUMO

We integratively assessed the function of alternative versions of a region near the N terminus of Drosophila muscle myosin heavy chain (encoded by exon 3a or 3b). We exchanged the alternative exon 3 regions between an embryonic isoform and the indirect flight muscle isoform. Each chimeric myosin was expressed in Drosophila indirect flight muscle, in the absence of other myosin isoforms, allowing for purified protein analysis and whole organism locomotory studies. The flight muscle isoform generates higher in vitro actin sliding velocity and solution ATPase rates than the embryonic isoform. Exchanging the embryonic exon 3 region into the flight muscle isoform decreased ATPase rates to embryonic levels but did not affect actin sliding velocity or flight muscle ultrastructure. Interestingly, this swap only slightly impaired flight ability. Exchanging the flight muscle-specific exon 3 region into the embryonic isoform increased actin sliding velocity 3-fold and improved indirect flight muscle ultrastructure integrity but failed to rescue the flightless phenotype of flies expressing embryonic myosin. These results suggest that the two structural versions of the exon 3 domain independently influence the kinetics of at least two steps of the actomyosin cross-bridge cycle.


Assuntos
Actinas/metabolismo , Adenosina Trifosfatases/metabolismo , Cadeias Pesadas de Miosina , Sequência de Aminoácidos , Animais , Drosophila , Proteínas Motores Moleculares/genética , Dados de Sequência Molecular , Músculo Esquelético/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Conformação Proteica , Análise de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...