Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 381, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670686

RESUMO

Illumination of atoms by resonant lasers can pump electrons into a coherent superposition of hyperfine levels which can no longer absorb the light. Such superposition is known as a dark state, because fluorescent light emission is then suppressed. Here we report an all-electric analogue of this destructive interference effect in a carbon nanotube quantum dot. The dark states are a coherent superposition of valley (angular momentum) states which are decoupled from either the drain or the source leads. Their emergence is visible in asymmetric current-voltage characteristics, with missing current steps and current suppression which depend on the polarity of the applied source-drain bias. Our results demonstrate coherent-population trapping by all-electric means in an artificial atom.

2.
J Neurosci ; 38(24): 5596-5605, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29789377

RESUMO

Despite the development of numerous novel anticonvulsant drugs, ∼30% of epilepsy patients remain refractory to antiepileptic drugs (AEDs). Many established and novel AEDs reduce hyperexcitability via voltage- and use-dependent inhibition of voltage-gated Na+ channels. For the widely used anticonvulsant carbamazepine (CBZ), use-dependent block of Na+ channels is significantly reduced both in experimental and human epilepsy. However, the molecular underpinnings of this potential cellular mechanism for pharmacoresistance have remained enigmatic.Here, we describe the mechanism that leads to the emergence of CBZ-resistant Na+ channels. We focused on the endogenous polyamine system, which powerfully modulates Na+ channels in a use-dependent manner. We had shown previously that the intracellular polyamine spermine is reduced in chronic epilepsy, resulting in increased persistent Na+ currents. Because spermine and CBZ both bind use-dependently in spatial proximity within the Na+ channel pore, we hypothesized that spermine loss might also be related to diminished CBZ response. Using the pilocarpine model of refractory epilepsy in male rats and whole-cell patch-clamp recordings, we first replicated the reduction of use-dependent block by CBZ in chronically epileptic animals. We then substituted intracellular spermine via the patch pipette in different concentrations. Under these conditions, we found that exogenous spermine significantly rescues use-dependent block of Na+ channels by CBZ. These findings indicate that an unexpected modulatory mechanism, depletion of intracellular polyamines, leads both to increased persistent Na+ currents and to diminished CBZ sensitivity of Na+ channels. These findings could lead to novel strategies for overcoming pharmacoresistant epilepsy that target the polyamine system.SIGNIFICANCE STATEMENT Pharmacoresistant epilepsy affects ∼18 million people worldwide, and intense efforts have therefore been undertaken to uncover the underlying molecular and cellular mechanisms. One of the key known candidate mechanisms of pharmacoresistance has been a loss of use-dependent Na+ channel block by the anticonvulsant carbamazepine (CBZ), both in human and experimental epilepsies. Despite intense scrutiny, the molecular mechanisms underlying this phenomenon have not been elucidated. We now show that a loss of intracellular spermine in chronic epilepsy is a major causative factor leading to the development of CBZ-resistant Na+ currents. This finding can be exploited both for the screening of anticonvulsants in expression systems, and for novel strategies to overcome pharmacoresistance that target the polyamine system.


Assuntos
Anticonvulsivantes/farmacologia , Carbamazepina/farmacologia , Epilepsia Resistente a Medicamentos/metabolismo , Epilepsia Resistente a Medicamentos/fisiopatologia , Espermina/metabolismo , Animais , Poliaminas Biogênicas/metabolismo , Resistência a Medicamentos/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar
3.
Nanotechnology ; 27(45): 454002, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27727150

RESUMO

We analyze an AC-driven dimer chain connected to a strongly biased electron source and drain. It turns out that the resulting transport exhibits fingerprints of topology. They are particularly visible in the driving-induced current suppression and the Fano factor. Thus, shot noise measurements provide a topological phase diagram as a function of the driving parameters. The observed phenomena can be explained physically by a mapping to an effective time-independent Hamiltonian and the emergence of edge states. Moreover, by considering quantum dissipation, we determine the requirements for the coherence properties in a possible experimental realization. For the computation of the zero-frequency noise, we develop an efficient method based on matrix-continued fractions.

4.
Nat Commun ; 7: 12442, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27526870

RESUMO

Many-body entanglement is at the heart of the Kondo effect, which has its hallmark in quantum dots as a zero-bias conductance peak at low temperatures. It signals the emergence of a conducting singlet state formed by a localized dot degree of freedom and conduction electrons. Carbon nanotubes offer the possibility to study the emergence of the Kondo entanglement by tuning many-body correlations with a gate voltage. Here we show another side of Kondo correlations, which counterintuitively tend to block conduction channels: inelastic co-tunnelling lines in the magnetospectrum of a carbon nanotube strikingly disappear when tuning the gate voltage. Considering the global SU(2) ⊗ SU(2) symmetry of a nanotube coupled to leads, we find that only resonances involving flips of the Kramers pseudospins, associated to this symmetry, are observed at temperatures and voltages below the corresponding Kondo scale. Our results demonstrate the robust formation of entangled many-body states with no net pseudospin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...