Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-508299

RESUMO

Several sublineages of omicron have emerged with additional mutations that may afford further antibody evasion. Here, we characterise the sensitivity of emerging omicron sublineages BA.2.75.2, BA.4.6, and BA.2.10.4 to antibody-mediated neutralisation, and identify extensive escape by BA.2.75.2. BA.2.75.2 was resistant to neutralisation by Evusheld (tixagevimab + cilgavimab), but remained sensitive to bebtelovimab. In recent serum samples from blood donors in Stockholm, Sweden, BA.2.75.2 was neutralised, on average, at titers approximately 6.5-times lower than BA.5, making BA.2.75.2 the most neutralisation resistant variant evaluated to date. These data raise concerns that BA.2.75.2 may effectively evade humoral immunity in the population.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-500716

RESUMO

An emerging SARS-CoV-2 Omicron sublineage, BA.2.75, is increasing in frequency in India and has been detected in at least 15 countries as of 19 July 2022. Relative to BA.2, BA.2.75 carries nine additional mutations in spike. Here we report the sensitivity of the BA.2.75 spike to neutralization by a panel of clinically-relevant and pre-clinical monoclonal antibodies, as well as by serum from blood donated in Stockholm, Sweden, before and after the BA.1/BA.2 infection wave. BA.2.75 largely maintains sensitivity to bebtelovimab, despite a slight reduction in potency, and exhibits moderate susceptibility to tixagevimab and cilgavimab. For sera sampled both before and after the BA.1/BA.2 infection wave, BA.2.75 does not show significantly greater antibody evasion than the currently-dominating BA.5.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-435581

RESUMO

BackgroundInsights into early, specific humoral and cellular responses to infection with SARS-CoV-2, as well as the persistence and magnitude of resulting immune memory is important amidst the ongoing pandemic. The combination of humoral and cellular immunity will most likely contribute to protection from reinfection or severe disease. MethodsHere, we conducted a longitudinal study on hospitalized moderate and severe COVID-19 patients from the acute phase of disease into convalescence at five- and nine-months post symptom onset. Utilizing flow cytometry, serological assays as well as B cell and T cell FluoroSpot assays, we assessed the magnitude and specificity of humoral and cellular immune memory during and after human SARS-CoV-2 infection. FindingsDuring acute COVID-19, we observed an increase in germinal center activity, a substantial expansion of antibodysecreting cells, and the generation of SARS-CoV-2-neutralizing antibodies. Despite gradually decreasing antibody levels, we show persistent, neutralizing antibody titers as well as robust specific memory B cell responses and polyfunctional T cell responses at five- and nine-months after symptom onset in both moderate and severe COVID-19 patients. Long-term SARS-CoV-2 specific responses were marked by preferential targeting of spike over nucleocapsid protein. ConclusionsOur findings describe the initiation and, importantly, persistence of cellular and humoral SARS-CoV-2 specific immunological memory in hospitalized COVID-19 patients long after recovery, likely contributing towards protection against reinfection.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21250591

RESUMO

Since the outset of the COVID-19 pandemic, increasing evidence suggests that the innate immune responses play an important role in the disease development. A dysregulated inflammatory state has been proposed as key driver of clinical complications in COVID-19, with a potential detrimental role of granulocytes. However, a comprehensive phenotypic description of circulating granulocytes in SARS-CoV-2-infected patients is lacking. In this study, we used high-dimensional flow cytometry for granulocyte immunophenotyping in peripheral blood collected from COVID-19 patients during acute and convalescent phases. Severe COVID-19 was associated with increased levels of both mature and immature neutrophils, and decreased counts of eosinophils and basophils. Distinct immunotypes were evident in COVID-19 patients, with altered expression of several receptors involved in activation, adhesion and migration of granulocytes (e.g. CD62L, CD11a/b, CD69, CD63, CXCR4). Paired sampling revealed recovery and phenotypic restoration of the granulocytic signature in the convalescent phase. The identified granulocyte immunotypes correlated with distinct sets of soluble inflammatory markers supporting pathophysiologic relevance. Furthermore, clinical features, including multi-organ dysfunction and respiratory function, could be predicted using combined laboratory measurements and immunophenotyping. This study provides a comprehensive granulocyte characterization in COVID-19 and reveals specific immunotypes with potential predictive value for key clinical features associated with COVID-19. SignificanceAccumulating evidence shows that granulocytes are key modulators of the immune response to SARS-CoV-2 infection and their dysregulation could significantly impact COVID-19 severity and patient recovery after virus clearance. In the present study, we identify selected immune traits in neutrophil, eosinophil and basophil subsets associated to severity of COVID-19 and to peripheral protein profiles. Moreover, computational modeling indicates that the combined use of phenotypic data and laboratory measurements can effectively predict key clinical outcomes in COVID-19 patients. Finally, patient-matched longitudinal analysis shows phenotypic normalization of granulocyte subsets 4 months after hospitalization. Overall, in this work we extend the current understanding of the distinct contribution of granulocyte subsets to COVID-19 pathogenesis.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20211367

RESUMO

ObjectivesThe role of innate lymphoid cells (ILCs) in coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is unknown. Understanding the immune response in COVID-19 could contribute to unravel the pathogenesis and identification of treatment targets. To describe the phenotypic landscape of circulating ILCs in COVID-19 patients and to identify ILC phenotypes correlated to serum biomarkers, clinical markers, and laboratory parameters relevant in COVID-19. MethodsBlood samples collected from moderately (n=11) and severely ill (n=12) COVID-19 patients as well as healthy control donors (n=16), were analyzed with 18-parameter flow cytometry. Using supervised and unsupervised approaches, we examined the ILC activation status and homing profile. Clinical and laboratory parameters were obtained from all COVID-19 patients and serum biomarkers were analyzed with multiplex immunoassays. ResultsILCs were largely depleted from the circulation of COVID-19 patients compared with healthy controls. Remaining circulating ILCs from patients revealed increased frequencies of ILC2 in moderate COVID-19, with a concomitant decrease of ILC precursors (ILCp), as compared with controls. ILC2 and ILCp showed an activated phenotype with increased CD69 expression, whereas expression levels of the chemokine receptors CXCR3 and CCR4 were significantly altered in ILC2 and ILCp, and ILC1, respectively. The activated ILC profile of COVID-19 patients was associated with soluble inflammatory markers, while frequencies of ILC subsets were correlated with laboratory parameters that reflect the disease severity. ConclusionThis study provides insights into the potential role of ILCs in immune responses against SARS-CoV-2, particularly linked to the severity of COVID-19.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20182550

RESUMO

Severe COVID-19 is characterized by excessive inflammation of the lower airways. The balance of protective versus pathological immune responses in COVID-19 is incompletely understood. Mucosa-associated invariant T (MAIT) cells are antimicrobial T cells that recognize bacterial metabolites, and can also function as innate-like sensors and mediators of antiviral responses. Here, we investigated the MAIT cell compartment in COVID-19 patients with moderate and severe disease, as well as in convalescence. We show profound and preferential decline in MAIT cells in circulation of patients with active disease paired with strong activation, as well as significant MAIT cell enrichment and pro-inflammatory IL-17A bias in the airways. Unsupervised analysis identified MAIT cell CD69high and CXCR3low immunotypes associated with poor clinical outcome. MAIT cell levels normalized in the convalescent phase, consistent with dynamic recruitment to the tissues and subsequent release with disease resolution. These findings indicate that MAIT cells are engaged in the immune response against SARS-CoV-2 and suggest their involvement in COVID-19 immunopathogenesis. One sentence summaryMAIT cells are strongly activated by SARS-CoV-2 infection in a manner associated with disease severity and outcome, they decline in blood, are enriched in the airways as a prominent IL-17A expressing subset, and dynamically recover in circulation during convalescence.

7.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20148478

RESUMO

Understanding innate immune responses in COVID-19 is important for deciphering mechanisms of host responses and interpreting disease pathogenesis. Natural killer (NK) cells are innate effector lymphocytes that respond to acute viral infections, but might also contribute to immune pathology. Here, using 28-color flow cytometry, we describe a state of strong NK cell activation across distinct subsets in peripheral blood of COVID-19 patients, a pattern mirrored in scRNA-seq signatures of lung NK cells. Unsupervised high-dimensional analysis identified distinct immunophenotypes that were linked to disease severity. Hallmarks of these immunophenotypes were high expression of perforin, NKG2C, and Ksp37, reflecting a high presence of adaptive NK cell expansions in circulation of patients with severe disease. Finally, arming of CD56bright NK cells was observed in course of COVID-19 disease states, driven by a defined protein-protein interaction network of inflammatory soluble factors. This provides a detailed map of the NK cell activation-landscape in COVID-19 disease.

8.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-174888

RESUMO

ABSTRACTSARS-CoV-2-specific memory T cells will likely prove critical for long-term immune protection against COVID-19. We systematically mapped the functional and phenotypic landscape of SARS-CoV-2-specific T cell responses in a large cohort of unexposed individuals as well as exposed family members and individuals with acute or convalescent COVID-19. Acute phase SARS-CoV-2-specific T cells displayed a highly activated cytotoxic phenotype that correlated with various clinical markers of disease severity, whereas convalescent phase SARS-CoV-2-specific T cells were polyfunctional and displayed a stem-like memory phenotype. Importantly, SARS-CoV-2-specific T cells were detectable in antibody-seronegative family members and individuals with a history of asymptomatic or mild COVID-19. Our collective dataset shows that SARS-CoV-2 elicits robust memory T cell responses akin to those observed in the context of successful vaccines, suggesting that natural exposure or infection may prevent recurrent episodes of severe COVID-19 also in seronegative individuals.Competing Interest StatementThe authors have declared no competing interest.View Full Text

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...