Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38793391

RESUMO

Defect-free thin-walled samples were built using wire arc additive manufacturing (WAAM) combined with the "coldArc" deposition technique by feeding a Ti-6Al-4V welding wire and using two deposition strategies, namely with and without the welding torch weaving. The microstructures formed in these samples were examined in relation to mechanical characteristics. The arc torch weaving at 1 Hz allowed us to interfere with the epitaxial growth of the ß-Ti columnar grains and, thus, obtain them a lower aspect ratio. Upon cooling, the α/α'+ß structure was formed inside the former ß-Ti grains, and this structure proved to be more uniform as compared to that of the samples built without the weaving. The subtransus quenching of the samples in water did not have any effect on the structure and properties of samples built with the arc torch weaving, whereas a more uniform grain structure was formed in the sample built without weaving. Quenching resulted also in a reduction in the relative elongation by 30% in both cases.

2.
J Cannabis Res ; 5(1): 38, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941019

RESUMO

BACKGROUND: Medical cannabis (MC) is increasingly used for chronic pain, but it is unclear how it aids in pain management. Previous literature suggests that MC could holistically alter the pain experience instead of only targeting pain intensity. However, this hypothesis has not been previously systematically tested. METHOD: A retrospective internet survey was used in a sample of Finnish chronic pain patients (40 MC users and 161 opioid users). The patients evaluated statements describing positive and negative phenomenological effects of the medicine. The two groups were propensity score matched to control for possible confounding factors. RESULTS: Exploratory factor analysis revealed three experience factors: Negative Side Effects, Positive Holistic Effects, and Positive Emotional Effects. The MC group (matched n = 39) received higher scores than the opioid group (matched n = 39) in Positive Emotional Effects with large effect size (Rank-Biserial Correlation RBC = .71, p < .001), and in Holistic Positive Effects with medium effect size (RBC = .47, p < .001), with no difference in Negative Side Effects (p = .13). MC and opioids were perceived as equally efficacious in reducing pain intensity. Ratings of individual statements were exploratively examined in a post hoc analysis. CONCLUSION: MC and opioids were perceived to be equally efficacious in reducing pain intensity, but MC additionally positively affected broader pain-related factors such as emotion, functionality, and overall sense of wellbeing. This supports the hypothesis that MC alleviates pain through holistically altering the pain experience.

3.
Materials (Basel) ; 16(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37297292

RESUMO

The regularities of microstructure formation in samples of multiphase composites obtained by additive electron beam manufacturing on the basis of aluminum alloy ER4043 and nickel superalloy Udimet-500 have been studied. The results of the structure study show that a multicomponent structure is formed in the samples with the presence of Cr23C6 carbides, solid solutions based on aluminum -Al or silicon -Si, eutectics along the boundaries of dendrites, intermetallic phases Al3Ni, AlNi3, Al75Co22Ni3, and Al5Co, as well as carbides of complex composition AlCCr, Al8SiC7, of a different morphology. The formation of a number of intermetallic phases present in local areas of the samples was also distinguished. A large amount of solid phases leads to the formation of a material with high hardness and low ductility. The fracture of composite specimens under tension and compression is brittle, without revealing the stage of plastic flow. Tensile strength values are significantly reduced from the initial 142-164 MPa to 55-123 MPa. In compression, the tensile strength values increase to 490-570 MPa and 905-1200 MPa with the introduction of 5% and 10% nickel superalloy, respectively. An increase in the hardness and compressive strength of the surface layers results in an increase in the wear resistance of the specimens and a decrease in the coefficient of friction.

4.
Materials (Basel) ; 16(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37374463

RESUMO

Electron beam additive manufacturing from dissimilar metal wires was used to intermix 5, 10 and 15 vol.% of Ti-Al-Mo-Z-V titanium alloy with CuAl9Mn2 bronze on a stainless steel substrate. The resulting alloys were subjected to investigations into their microstructural, phase and mechanical characteristics. It was shown that different microstructures were formed in an alloy containing 5 vol.% titanium alloy, as well as others containing 10 and 15 vol.%. The first was characterized by structural components such as solid solution, eutectic intermetallic compound TiCu2Al and coarse grains of γ1-Al4Cu9. It had enhanced strength and demonstrated steady oxidation wear in sliding tests. The other two alloys also contained large flower-like Ti(Cu,Al)2 dendrites that appeared due to the thermal decomposition of γ1-Al4Cu9. This structural transformation resulted in catastrophic embrittlement of the composite and changing of wear mechanism from oxidative to abrasive.

5.
Pathophysiology ; 30(2): 110-122, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37092524

RESUMO

Damage to the peripheral nervous system (PNS) is a common complication of breast cancer (BC) treatment, with 60 to 80% of breast cancer survivors experiencing symptoms of PNS damage. In the current study, the levels of brain-derived neurotrophic factor (BDNF), galectin-3 (Gal-3), and neurotrophin-3 (NT-3) were measured in the blood serum of BC patients by ELISA as potential biomarkers that might indicate the PNS damage. Sixty-seven patients were enrolled in this multi-center trial and compared to the aged-matched healthy female volunteers (control group) (n = 25). Intergroup comparison of biomarker levels (i.e., Gal-3 and BDNF) did not show significant differences in any of the studied subgroups. However, intriguingly, NT-3 levels were significantly higher in BC patients as compared to healthy volunteers, constituting 14.85 [10.3; 18.0] and 5.74 [4.56; 13.7] pg/mL, respectively (p < 0.001). In conclusion, NT-3 might be employed as a potential biomarker in BC patients with clinical manifestations of PNS damage. However, further studies to validate its correlation to the degree of peripheral nervous system lesions are of high value.

6.
Materials (Basel) ; 16(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36676554

RESUMO

In the presented work, the effect of friction stir processing admixing the zirconium tungstate ZrW2O8 powder on the microstructure, mechanical and tribological properties of the AA5056 Al-Mg alloy stir zone has been studied. The FSP resulted in obtaining dense composite stir zones where α-ZrW2O8 underwent the following changes: (i) high-temperature transformation into metastable ß'-ZrW2O8 and (ii) decomposition into WO3 and ZrO2 oxides followed by the formation of intermetallic compounds WAl12 and ZrAl3. These precipitates served as reinforcing phases to improve mechanical and tribological characteristics of the obtained fine-grained composites. The reduced values of wear rate and friction coefficient are due to the combined action the Hall-Petch mechanism and reinforcement by the decomposition products, including Al2O3, ZrO2, ß'-ZrW2O8 and intermetallic compounds such as WAl12 and ZrAl3. Potential applications of the above-discussed composites maybe related to their improved tribological characteristics, for example in aerospace and vehicle-building industries.

7.
Pathophysiology ; 29(4): 595-609, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36278563

RESUMO

Complex breast cancer (BC) treatment can cause various neurological and psychiatric complications, such as postmastectomy pain syndrome, vestibulocerebellar ataxia, and depression, which can lead to microstructural damage of the white matter tracts of the brain. The purpose of the study is to assess microstructural changes in the white matter tracts of the brain in BC survivors using diffusion tensor imaging (DTI). Single DTI scans were performed on patients (n = 84) after complex BC treatment (i.e., surgery, chemotherapy and/or radiation therapy) and on the control group (n = 40). According to the results, a decrease in the quantitative anisotropy (FDR ≤ 0.05) was revealed in the bilateral corticospinal tracts, cerebellar tracts, corpus callosum, fornix, left superior corticostriatal and left corticopontine parietal in patients after BC treatment in comparison to the control group. A decrease in the quantitative anisotropy (FDR ≤ 0.05) was also revealed in the corpus callosum and right cerebellar tracts in patients after BC treatment with the presence of postmastectomy pain syndrome and vestibulocerebellar ataxia. The use of DTI in patients after BC treatment reveals microstructural properties of the white matter tracts in the brain. The results will allow for the improvement of treatment and rehabilitation approaches in patients receiving treatment for breast cancer.

8.
Materials (Basel) ; 15(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36143581

RESUMO

Novel composite CuA19Mn2/Udimet-500 alloy walls with different content of the Udimet 500 were built using electron-beam double-wire-feed additive manufacturing. Intermixing both metals within the melted pool resulted in dissolving nickel and forcing out the aluminum from bronze. The resulting phases were NiAl particles and grains, M23C6/NiAl core/shell particles and Cu-Ni-Al solid solution. Precipitation of these phases resulted in the increased hardness and tensile strength as well as reduced ductility of the composite alloys. Such a hardening resulted in improving the wear resistance as compared to that of source aluminum bronze.

10.
Nat Commun ; 11(1): 4189, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32826894

RESUMO

Thin-film solar cells based on polycrystalline absorbers have reached very high conversion efficiencies of up to 23-25%. In order to elucidate the limiting factors that need to be overcome for even higher efficiency levels, it is essential to investigate microscopic origins of loss mechanisms in these devices. In the present work, a high efficiency (21% without anti-reflection coating) copper indium gallium diselenide (CIGSe) solar cell is characterized by means of a correlative microscopy approach and corroborated by means of photoluminescence spectroscopy. The values obtained by the experimental characterization are used as input parameters for two-dimensional device simulations, for which a real microstructure was used. It can be shown that electrostatic potential and lifetime fluctuations exhibit no substantial impact on the device performance. In contrast, nonradiative recombination at random grain boundaries can be identified as a significant loss mechanism for CIGSe solar cells, even for devices at a very high performance level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...