Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(3): 3427-3441, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38194630

RESUMO

The study presents a streamlined one-step process for producing highly porous, metal-free, N-doped activated carbon (N-AC) for CO2 capture and herbicide removal from simulated industrially polluted and real environmental systems. N-AC was prepared from kraft lignin─a carbon-rich and abundant byproduct of the pulp industry, using nitric acid as the activator and urea as the N-dopant. The reported carbonization process under a nitrogen atmosphere renders a product with a high yield of 30% even at high temperatures up to 800 °C. N-AC exhibited a substantial high N content (4-5%), the presence of aliphatic and phenolic OH groups, and a notable absence of carboxylic groups, as confirmed by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and Boehm's titration. Porosity analysis indicated that micropores constituted the majority of the pore structure, with 86% of pores having diameters less than 0.6 nm. According to BET adsorption analysis, the developed porous structure of N-AC boasted a substantial specific surface area of 1000 m2 g-1. N-AC proved to be a promising adsorbent for air and water purification. Specifically, N-AC exhibited a strong affinity for CO2, with an adsorption capacity of 1.4 mmol g-1 at 0.15 bar and 20 °C, and it demonstrated the highest selectivity over N2 from the simulated flue gas system (27.3 mmol g-1 for 15:85 v/v CO2/N2 at 20 °C) among all previously reported nitrogen-doped AC materials from kraft lignin. Moreover, N-AC displayed excellent reusability and efficient CO2 release, maintaining an adsorption capacity of 3.1 mmol g-1 (at 1 bar and 25 °C) over 10 consecutive adsorption-desorption cycles, confirming N-AC as a useful material for CO2 storage and utilization. The unique cationic nature of N-AC enhanced the adsorption of herbicides in neutral and weakly basic environments, which is relevant for real waters. It exhibited an impressive adsorption capacity for the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) at 96 ± 6 mg g-1 under pH 6 and 25 °C according to the Langmuir-Freundlich model. Notably, N-AC preserves its high adsorption capacity toward 2,4-D from simulated groundwater and runoff from tomato greenhouse, while performance in real samples from Fyris river in Uppsala, Sweden, causes a decrease of only 4-5%. Owing to the one-step process, high yield, annual abundance of kraft lignin, and use of environmentally friendly activating agents, N-AC has substantial potential for large-scale industrial applications.

2.
Molecules ; 24(17)2019 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-31450574

RESUMO

Lignin processing products have an extensive using range. Because products properties depend on lignin precursor quality it was interesting to study lignin isolated from rice husk being a large tonnage waste of rice production and its structural transformations during carbonization. Lignin isolated by the thermal hydrolysis method with H2SO4 1 wt % solution and its carbonized products prepared under different carbonization conditions were characterized using elemental analysis, IR, TPD-MS, XRD, TEM, and EPR. It was shown lignin degradation takes place over the wide (220-520 °C) temperature range. Silica presenting in lignin affects the thermal destruction of this polymer. Due to the strong chemical bond with phenolic hydroxylic group it decreases an evaporation of volatile compounds and as a result increases the temperature range of the lignin degradation. Rice husk hydrolytic lignin transformations during carbonization occur with generation of free radicals. Their concentration is decreased after condensation of aromatic rings with carbon polycycles formation, i.e., the graphite-like structure. Quantity and X-ray diffraction characteristics of the graphite-like phase depend on carbonization conditions. Morphology of the lignin-based carbonized products is represented by carbon fibers, carbon and silica nanoparticles, and together with another structure characteristics provides prospective performance properties of lignin-based end products.


Assuntos
Lignina/química , Oryza/química , Transformação Bacteriana , Hidrólise , Cinese , Lignina/ultraestrutura , Espectrometria de Massas , Análise Espectral , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...