Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Cancer ; 119(11): 2546-56, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16988944

RESUMO

Knowing the status of molecules involved in cell cycle control in cancer is vital for therapeutic approaches aiming at their restoration. The p27(KIP1) and p57(KIP2) cyclin-dependent kinase inhibitors are nodal factors controlling normal cell cycle. Their expression in normal lung raises the question whether they have a mutual exclusive or redundant role in nonsmall cell lung cancer (NSCLC). A comparative comprehensive analysis was performed in a series of 70 NSCLCs. The majority of cases showed significantly reduced expression of both members compared to normal counterparts. Low KIP protein levels correlated with increased proliferation, which seems to be histological subtype preponderant. At mechanistic level, degradation by SKP2 was demonstrated, in vivo and in vitro, by siRNA-methodology, to be the most important downregulating mechanism of both KIPs in NSCLC. Decreased p57(KIP) (2)-transcription complements the above procedure in lowering p57(KIP2)-protein levels. Methylation was the main cause of decreased p57(KIP) (2)-mRNA levels. Allelic loss and imprinting from LIT1 mRNA contribute also to decreased p57(KIP2) transcription. In vitro recapitulation of the in vivo findings, in A549 lung cells (INK4A-B((-/-))), suggested that inhibition of the SKP2-degradation mechanism restores p27(KIP1) and p57(KIP2) expression. Double siRNA treatments demonstrated that each KIP is independently capable of restraining cell growth. An additional demethylation step is required for complete reconstitution of p57(KIP2) expression in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p57/genética , Metilação de DNA , Regulação para Baixo , Neoplasias Pulmonares/genética , Proteínas Quinases Associadas a Fase S/fisiologia , Sequência de Bases , Primers do DNA , Humanos , Perda de Heterozigosidade , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...