Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38794070

RESUMO

The production of multivariate time-series data facilitates the continuous monitoring of production assets. The modelling approach of multivariate time series can reveal the ways in which parameters evolve as well as the influences amongst themselves. These data can be used in tandem with artificial intelligence methods to create insight on the condition of production equipment, hence potentially increasing the sustainability of existing manufacturing and production systems, by optimizing resource utilization, waste, and production downtime. In this context, a predictive maintenance method is proposed based on the combination of LSTM-Autoencoders and a Transformer encoder in order to enable the forecasting of asset failures through spatial and temporal time series. These neural networks are implemented into a software prototype. The dataset used for training and testing the models is derived from a metal processing industry case study. Ultimately, the goal is to train a remaining useful life (RUL) estimation model.

2.
Front Artif Intell ; 6: 1241522, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841235

RESUMO

Volatility and uncertainty of today's value chains along with the market's demands for low-batch customized products mandate production systems to become smarter and more resilient, dynamically and even autonomously adapting to both external and internal disturbances. Such resilient behavior can be partially enabled by highly interconnected Cyber-Physical Production Systems (CPPS) incorporating advanced Artificial Intelligence (AI) technologies. Multi-agent solutions can provide better planning and control, improving flexibility and responsiveness in production systems. Small modular parts can autonomously take intelligent decisions and react to local events. The main goal of decentralization and interconnectivity is to enable autonomous and cooperative decision-making. Nevertheless, a more efficient orchestration of various AI components and deeper human integration are required. In addition, global behaviors of coalitions of autonomous agents are not easily comprehensible by workers. Furthermore, it is challenging to implement an Industry 4.0 paradigm where a human should be in charge of decision-making and execution. This paper discusses a Multi-Agent System (MAS) where several software agents cooperate with smart workers to enable a dynamic and reconfigurable production paradigm. Asset Administration Shell (AAS) submodels hold smart workers' descriptions in machine-readable format, serving as an integration layer between various system's components. The self-description capability of the AAS supports the system's adaptability and self-configuration. The proposed concept supports the plug-and-produce functionality of the production modules and improves human-machine integration in the shared assembly tasks.

3.
Sensors (Basel) ; 21(3)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535642

RESUMO

Condition monitoring of industrial equipment, combined with machine learning algorithms, may significantly improve maintenance activities on modern cyber-physical production systems. However, data of proper quality and of adequate quantity, modeling both good operational conditions as well as abnormal situations throughout the operational lifecycle, are required. Nevertheless, this is difficult to acquire in a non-destructive approach. In this context, this study investigates an approach to enable a transition from preventive maintenance activities, that are scheduled at predetermined time intervals, into predictive ones. In order to enable such approaches in a cyber-physical production system, a deep learning algorithm is used, allowing for maintenance activities to be planned according to the actual operational status of the machine and not in advance. An autoencoder-based methodology is employed for classifying real-world machine and sensor data, into a set of condition-related labels. Real-world data collected from manufacturing operations are used for training and testing a prototype implementation of Long Short-Term Memory autoencoders for estimating the remaining useful life of the monitored equipment. Finally, the proposed approach is evaluated in a use case related to a steel industry production process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...