Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38411469

RESUMO

An upgrade of the electronic system for frequency stabilization of the HeNe laser, primary length standard of Republic of Serbia, based on digital electronics, is described. Arduino microcontrollers have been used for stabilization, and laptop computer has been used only to communicate with the user. In addition, an analog electronics has been developed in order to boost the performance of the setup. The setup is simple and inexpensive, made of off-the-shelf electronics components. Despite this, good performances have been achieved.

2.
Sci Rep ; 9(1): 16305, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31705047

RESUMO

Taking advantage of the flexibility of the apatite structure, nano- and micro-particles of hydroxyapatite (HAp) were doped with different combinations of rare earth ions (RE3+ = Gd, Eu, Yb, Tm) to achieve a synergy among their magnetic and optical properties and to enable their application in preventive medicine, particularly diagnostics based on multimodal imaging. All powders were synthesized through hydrothermal processing at T ≤ 200 °C. An X-ray powder diffraction analysis showed that all powders crystallized in P63/m space group of the hexagonal crystal structure. The refined unit-cell parameters reflected a decrease in the unit cell volume as a result of the partial substitution of Ca2+ with smaller RE3+ ions at both cation positions. The FTIR analysis additionally suggested that a synergy may exist solely in the triply doped system, where the lattice symmetry and vibration modes become more coherent than in the singly or doubly doped systems. HAp:RE3+ optical characterization revealed a change in the energy band gap and the appearance of a weak blue luminescence (λex = 370 nm) due to an increased concentration of defects. The "up"- and the "down"-conversion spectra of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders showed characteristic transitions of Tm3+ and Eu3+, respectively. Furthermore, in contrast to diamagnetic HAp, all HAp:RE3+ powders exhibited paramagnetic behavior. Cell viability tests of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders in human dental pulp stem cell cultures indicated their good biocompatibility.

3.
Acta Crystallogr C Struct Chem ; 75(Pt 10): 1417-1423, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31589158

RESUMO

Two polymorphs of tripotassium erbium disilicate, K3ErSi2O7, were synthesized by high-temperature flux crystal growth during the exploration of the flux technique for growing new alkali rare-earth elements (REE) containing silicates. Their crystal structures were determined by single-crystal X-ray diffraction analysis. One of them (denoted 1) crystallizes in the space group P63/mmc and is isostructural with disilicates K3LuSi2O7, K3ScSi2O7 and K3YSi2O7, while the other (denoted 2) crystallizes in the space group P63/mcm and is isostructural with disilicates K3NdSi2O7, K3REESi2O7 (REE = Gd-Yb), K3YSi2O7, K3(Y0.9Dy0.1)Si2O7 and K3SmSi2O7. In the crystal structure of polymorph 1, the Er cations are in an almost perfect octahedral coordination, while in the crystal structure of polymorph 2, part of the Er cations are in a slightly distorted octahedral coordination and the other part are in an ideal trigonal prismatic coordination environment. Sharing six corners, disilicate Si2O7 groups in the crystal structure of polymorph 1 link six ErO6 octahedra, forming a three-dimensional network and nine-coordinated potassium cations are located in its holes. In the crystal structure of polymorph 2, the disilicate Si2O7 groups connect four ErO6 octahedra, as well as one ErO6 trigonal prism. Three differently coordinated potassium cations are situated between them. Different site symmetries of the erbium cations in the crystal structures of polymorphs 1 and 2 affect their photoluminescence properties. Only polymorph 2 exhibits luminescence. Intense narrow lines in the emission spectrum are a result of the 4f-4f transition. The green emission line at 560 nm is the result of the Er3+ transition 4S3/2→4I15/2, and the luminescence line at 690 nm is the result of a 4F9/2→4I15/2 transition. The crystal morphologies of the two polymorphs are similar. Crystals of polymorph 1 are in the form of a hexagonal prism in combination with a hexagonal base, while crystals of polymorph 2 contain a dihexagonal prism in combination with a hexagonal base, although poorly developed faces of the dihexagonal pyramid can also be noticed.

4.
Biointerphases ; 14(3): 031001, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31109162

RESUMO

One of the main goals of materials science in the 21st century is the development of materials with rationally designed properties as substitutes for traditional pharmacotherapies. At the same time, there is a lack of understanding of the exact material properties that induce therapeutic effects in biological systems, which limits their rational optimization for the related medical applications. This study sets the foundation for a general approach for elucidating nanoparticle properties as determinants of antibacterial activity, with a particular focus on calcium phosphate nanoparticles. To that end, nine physicochemical effects were studied and a number of them were refuted, thus putting an end to frequently erred hypotheses in the literature. Rather than having one key particle property responsible for eliciting the antibacterial effect, a complex synergy of factors is shown to be at work, including (a) nanoscopic size; (b) elevated intracellular free calcium levels due to nanoparticle solubility; (c) diffusivity and favorable electrostatic properties of the nanoparticle surface, primarily low net charge and high charge density; and (d) the dynamics of perpetual exchange of ultrafine clusters across the particle/solution interface. On the positive side, this multifaceted mechanism is less prone to induce bacterial resistance to the therapy and can be a gateway to the sphere of personalized medicine. On a more problematic side, it implies a less intense effect compared to single-target molecular therapies and a difficulty of elucidating the exact mechanisms of action, while also making the rational design of theirs for this type of medical application a challenge.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Fosfatos de Cálcio/farmacologia , Nanopartículas/química , Nanopartículas/microbiologia , Fenômenos Químicos
5.
Mater Sci Eng C Mater Biol Appl ; 91: 597-605, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30033292

RESUMO

Lanthanide-doped fluoride up-converting nanoparticles (UCNPs) represent the new class of imaging contrast agents which hold great potential for overcoming existing problems associated with traditionally used dyes, proteins and quantum dots. In this study, a new kind of hybrid NaYF4:Yb,Er/PLGA nanoparticles for efficient biolabeling were prepared through one-pot solvothermal synthesis route. Morphological and structural characteristics of the as-designed particles were obtained using X-ray powder diffraction (XRPD), scanning and transmission electron microscopy (SEM/TEM), energy dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) and photoluminescence (PL) spectroscopy, while their cytotoxicity as well as up-conversion (UC) labeling capability were tested in vitro toward human gingival cells (HGC) and oral squamous cell carcinoma (OSCC). The results revealed coexistence of the cubic (Fm-3m) and hexagonal (P63/m) phase in spherical and irregularly shaped nanoparticles, respectively. PLGA [Poly(lactic-co-glycolic acid)] ligands attached at the surface of UCNPs particles provide their enhanced cellular uptake and enable high-quality cells imaging through a near-infrared (NIR) laser scanning microscopy (λex = 980 nm). Moreover, the fact that NaYF4:Yb,Er/PLGA UCNPs show low cytotoxicity against HGC over the whole concentration range (10-50 µg/mL) while a dose dependent viability of OSCC is obtained indicates that these might be a promising candidates for targeted cancer cell therapy.


Assuntos
Diagnóstico por Imagem , Érbio/química , Ácido Láctico/química , Neoplasias Bucais/diagnóstico por imagem , Neoplasias de Células Escamosas/diagnóstico por imagem , Ácido Poliglicólico/química , Espectroscopia de Luz Próxima ao Infravermelho , Itérbio/química , Adulto , Morte Celular , Linhagem Celular Tumoral , Gengiva/patologia , Humanos , Neoplasias Bucais/patologia , Nanopartículas/química , Nanopartículas/ultraestrutura , Neoplasias de Células Escamosas/patologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Adulto Jovem
6.
RSC Adv ; 8(48): 27429-27437, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35540002

RESUMO

The emerging up-conversion nanoparticles (UCNPs) offer a wide range of biotechnology applications, from biomarkers and deep tissue imaging, to single molecule tracking and drug delivery. Their successful conjugation to biocompatible agents is crucial for specific molecules recognition and usually requires multiple steps which may lead to low reproducibility. Here, we report a simple and rapid one-step procedure for in situ synthesis of biocompatible amino-functionalized NaYF4:Yb,Er UCNPs that could be used for NIR-driven fluorescence cell labeling. X-ray diffraction showed that UCNPs synthesized through chitosan-assisted solvothermal processing are monophasic and crystallize in a cubic α phase. Scanning and transmission electron microscopy revealed that the obtained crystals are spherical in shape with a mean diameter of 120 nm. Photoluminescence spectra indicated weaker green (2H11/2, 4S3/2 → 4I15/2) and stronger red emission (4F9/2 → 4I15/2), as a result of enhanced non-radiative 4I11/2 → 4I13/2 Er3+ relaxation. The presence of chitosan groups at the surface of UCNPs was confirmed by Fourier transform infrared spectroscopy, thermogravimetry and X-ray photoelectron spectroscopy. This provides their enhanced internalization in cells, at low concentration of 10 µg ml-1, without suppression of cell viability after 24 h of exposure. Furthermore, upon 980 nm laser irradiation, the amino-functionalized NaYF4:Yb,Er UCNPs were successfully used in vitro for labeling of two human cell types, normal gingival and oral squamous cell carcinoma.

7.
Nanoscale ; 5(16): 7601-12, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23842592

RESUMO

The surface modification of nanocrystalline TiO2 particles (45 Å) with salicylate-type ligands consisting of an extended aromatic ring system, specifically 3-hydroxy-2-naphthoic acid, 3,5-dihydroxy-2-naphthoic acid and 3,7-dihydroxy-2-naphthoic acid, was found to alter the optical properties of nanoparticles in a similar way to salicylic acid. The formation of the inner-sphere charge-transfer (CT) complexes results in a red shift of the semiconductor absorption compared to unmodified nanocrystallites and a reduction in the band gap upon the increase in the electron delocalization when including an additional ring. The investigated ligands have the optimal geometry for binding to surface Ti atoms, resulting in ring coordination complexes of a salicylate-type (binuclear bidentate binding-bridging) thus restoring the six-coordinated octahedral geometry of surface Ti atoms. From both absorption measurements in methanol/water = 90/10 solutions and steady-state quenching measurements of modifier fluorescence upon binding to TiO2 in aqueous solutions, stability constants in the order of 10(3) M(-1) have been determined at pH 2 and pH 3. Fluorescence lifetime measurements, in the presence and absence of colloidal TiO2 nanoparticles, indicated that the fluorescence quenching process is primarily static quenching, thus proving the formation of a nonfluorescent CT complex. The binding structures were investigated by using FTIR spectroscopy. Quantum chemical calculations on model systems using density functional theory (DFT) were performed to obtain the vibrational frequencies of charge transfer complexes, and the calculated values were then compared with the experimental data.


Assuntos
Nanopartículas Metálicas/química , Naftóis/química , Ácido Salicílico/química , Titânio/química , Concentração de Íons de Hidrogênio , Ligantes , Teoria Quântica , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
8.
Appl Opt ; 52(8): 1716-24, 2013 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-23478777

RESUMO

Eu(3+)- and Dy(3+)-doped GdVO(4) samples synthesized by a high-temperature solid-state method are investigated by fluorescence spectroscopy at 298-750 K. They demonstrate potential for development as thermographic phosphors because the experimental and theoretical temperature dependence of the intensity ratio of the two lines agrees well. Experimental lifetime measurements recorded at 10-750 K were fitted using three theoretical models: multiphonon relaxation, temperature quenching through the charge transfer (CT) region, and our modified CT model (TDCT), which considers the temperature dependence of CT energy. The TDCT model yields the best results with good agreement between experimental and fitted lifetime data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...