Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photodiagnosis Photodyn Ther ; 42: 103328, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36775229

RESUMO

In this work, we incorporated the hydrophobic alkylamide and hydroxyalkylamide derivatives of chlorin e6 into the lipid bilayer of liposomes. We obtained the data on the effectiveness of incorporation of studied compounds and have determined the size of liposomes and their stability when stored in liquid form. We also investigated the bioactivity of chlorin photosensitizers and compared the photodynamic activity of studied compounds in free and liposomal forms.


Assuntos
Clorofilídeos , Fotoquimioterapia , Porfirinas , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Lipossomos , Fotoquimioterapia/métodos , Linhagem Celular Tumoral , Porfirinas/farmacologia , Porfirinas/química
2.
Methods Mol Biol ; 1613: 101-124, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28849560

RESUMO

Analysis of NGS and other sequencing data, gene variants, gene expression, proteomics, and other high-throughput (OMICs) data is challenging because of its biological complexity and high level of technical and biological noise. One way to deal with both problems is to perform analysis with a high fidelity annotated knowledgebase of protein interactions, pathways, and functional ontologies. This knowledgebase has to be structured in a computer-readable format and must include software tools for managing experimental data, analysis, and reporting. Here, we present MetaCore™ and Key Pathway Advisor (KPA), an integrated platform for functional data analysis. On the content side, MetaCore and KPA encompass a comprehensive database of molecular interactions of different types, pathways, network models, and ten functional ontologies covering human, mouse, and rat genes. The analytical toolkit includes tools for gene/protein list enrichment analysis, statistical "interactome" tool for the identification of over- and under-connected proteins in the dataset, and a biological network analysis module made up of network generation algorithms and filters. The suite also features Advanced Search, an application for combinatorial search of the database content, as well as a Java-based tool called Pathway Map Creator for drawing and editing custom pathway maps. Applications of MetaCore and KPA include molecular mode of action of disease research, identification of potential biomarkers and drug targets, pathway hypothesis generation, analysis of biological effects for novel small molecule compounds and clinical applications (analysis of large cohorts of patients, and translational and personalized medicine).


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes , Mapeamento de Interação de Proteínas , Algoritmos , Animais , Humanos , Bases de Conhecimento , Camundongos , Ratos
3.
J Cancer ; 6(6): 490-501, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26000039

RESUMO

BACKGROUND: Despite a growing number of studies evaluating cancer of prostate (CaP) specific gene alterations, oncogenic activation of the ETS Related Gene (ERG) by gene fusions remains the most validated cancer gene alteration in CaP. Prevalent gene fusions have been described between the ERG gene and promoter upstream sequences of androgen-inducible genes, predominantly TMPRSS2 (transmembrane protease serine 2). Despite the extensive evaluations of ERG genomic rearrangements, fusion transcripts and the ERG oncoprotein, the prognostic value of ERG remains to be better understood. Using gene expression dataset from matched prostate tumor and normal epithelial cells from an 80 GeneChip experiment examining 40 tumors and their matching normal pairs in 40 patients with known ERG status, we conducted a cancer signaling-focused functional analysis of prostatic carcinoma representing moderate and aggressive cancers stratified by ERG expression. RESULTS: In the present study of matched pairs of laser capture microdissected normal epithelial cells and well-to-moderately differentiated tumor epithelial cells with known ERG gene expression status from 20 patients with localized prostate cancer, we have discovered novel ERG associated biochemical networks. CONCLUSIONS: Using causal network reconstruction methods, we have identified three major signaling pathways related to MAPK/PI3K cascade that may indeed contribute synergistically to the ERG dependent tumor development. Moreover, the key components of these pathways have potential as biomarkers and therapeutic target for ERG positive prostate tumors.

4.
Cell Stem Cell ; 13(1): 117-30, 2013 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-23770079

RESUMO

Early full-term pregnancy is one of the most effective natural protections against breast cancer. To investigate this effect, we have characterized the global gene expression and epigenetic profiles of multiple cell types from normal breast tissue of nulliparous and parous women and carriers of BRCA1 or BRCA2 mutations. We found significant differences in CD44(+) progenitor cells, where the levels of many stem cell-related genes and pathways, including the cell-cycle regulator p27, are lower in parous women without BRCA1/BRCA2 mutations. We also noted a significant reduction in the frequency of CD44(+)p27(+) cells in parous women and showed, using explant cultures, that parity-related signaling pathways play a role in regulating the number of p27(+) cells and their proliferation. Our results suggest that pathways controlling p27(+) mammary epithelial cells and the numbers of these cells relate to breast cancer risk and can be explored for cancer risk assessment and prevention.


Assuntos
Neoplasias da Mama/etiologia , Linhagem da Célula , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Perfilação da Expressão Gênica , Glândulas Mamárias Humanas/citologia , Paridade/genética , Células-Tronco/citologia , Proteína BRCA1/genética , Proteína BRCA2/genética , Biomarcadores/metabolismo , Western Blotting , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p27/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Citometria de Fluxo , Imunofluorescência , Humanos , Técnicas Imunoenzimáticas , Glândulas Mamárias Humanas/metabolismo , Mutação/genética , Análise de Sequência com Séries de Oligonucleotídeos , Gravidez , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Células-Tronco/metabolismo , Células Estromais/citologia , Células Estromais/metabolismo
5.
BMC Bioinformatics ; 13 Suppl 16: S13, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23176192

RESUMO

As it is the case with any OMICs technology, the value of proteomics data is defined by the degree of its functional interpretation in the context of phenotype. Functional analysis of proteomics profiles is inherently complex, as each of hundreds of detected proteins can belong to dozens of pathways, be connected in different context-specific groups by protein interactions and regulated by a variety of one-step and remote regulators. Knowledge-based approach deals with this complexity by creating a structured database of protein interactions, pathways and protein-disease associations from experimental literature and a set of statistical tools to compare the proteomics profiles with this rich source of accumulated knowledge. Here we describe the main methods of ontology enrichment, interactome topology and network analysis applied on a comprehensive, manually curated and semantically consistent knowledge source MetaBase and demonstrate several case studies in different disease areas.


Assuntos
Bases de Dados de Proteínas/normas , Bases de Conhecimento , Proteômica/estatística & dados numéricos , Bases de Dados de Proteínas/estatística & dados numéricos , Humanos , Proteínas/genética
6.
Chem Biol Drug Des ; 80(3): 406-16, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22583392

RESUMO

The ability to accurately predict the toxicity of drug candidates from their chemical structure is critical for guiding experimental drug discovery toward safer medicines. Under the guidance of the MetaTox consortium (Thomson Reuters, CA, USA), which comprised toxicologists from the pharmaceutical industry and government agencies, we created a comprehensive ontology of toxic pathologies for 19 organs, classifying pathology terms by pathology type and functional organ substructure. By manual annotation of full-text research articles, the ontology was populated with chemical compounds causing specific histopathologies. Annotated compound-toxicity associations defined histologically from rat and mouse experiments were used to build quantitative structure-activity relationship models predicting subcategories of liver and kidney toxicity: liver necrosis, liver relative weight gain, liver lipid accumulation, nephron injury, kidney relative weight gain, and kidney necrosis. All models were validated using two independent test sets and demonstrated overall good performance: initial validation showed 0.80-0.96 sensitivity (correctly predicted toxic compounds) and 0.85-1.00 specificity (correctly predicted non-toxic compounds). Later validation against a test set of compounds newly added to the database in the 2 years following initial model generation showed 75-87% sensitivity and 60-78% specificity. General hepatotoxicity and nephrotoxicity models were less accurate, as expected for more complex endpoints.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/patologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Nefropatias/induzido quimicamente , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Preparações Farmacêuticas/química , Relação Quantitativa Estrutura-Atividade , Animais , Bases de Dados Factuais , Rim/patologia , Fígado/patologia , Camundongos , Modelos Biológicos , Ratos
7.
Sarcoma ; 2012: 820254, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22448124

RESUMO

Chondrosarcomas are among the most malignant skeletal tumors. Dedifferentiated chondrosarcoma is a highly aggressive subtype of chondrosarcoma, with lung metastases developing within a few months of diagnosis in 90% of patients. In this paper we performed comparative analyses of the transcriptomes of five individual metastatic lung lesions that were surgically resected from a patient with dedifferentiated chondrosarcoma. We document for the first time a high heterogeneity of gene expression profiles among the individual lung metastases. Moreover, we reveal a signature of "multifunctional" genes that are expressed in all metastatic lung lesions. Also, for the first time, we document the occurrence of massive macrophage infiltration in dedifferentiated chondrosarcoma lung metastases.

8.
J Clin Invest ; 121(7): 2723-35, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21633165

RESUMO

Intratumor heterogeneity is a major clinical problem because tumor cell subtypes display variable sensitivity to therapeutics and may play different roles in progression. We previously characterized 2 cell populations in human breast tumors with distinct properties: CD44+CD24- cells that have stem cell-like characteristics, and CD44-CD24+ cells that resemble more differentiated breast cancer cells. Here we identified 15 genes required for cell growth or proliferation in CD44+CD24- human breast cancer cells in a large-scale loss-of-function screen and found that inhibition of several of these (IL6, PTGIS, HAS1, CXCL3, and PFKFB3) reduced Stat3 activation. We found that the IL-6/JAK2/Stat3 pathway was preferentially active in CD44+CD24- breast cancer cells compared with other tumor cell types, and inhibition of JAK2 decreased their number and blocked growth of xenografts. Our results highlight the differences between distinct breast cancer cell types and identify targets such as JAK2 and Stat3 that may lead to more specific and effective breast cancer therapies.


Assuntos
Neoplasias da Mama/patologia , Antígeno CD24/metabolismo , Receptores de Hialuronatos/metabolismo , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco/fisiologia , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Antígeno CD24/genética , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Humanos , Receptores de Hialuronatos/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/genética , Camundongos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fator de Transcrição STAT3/genética , Células-Tronco/citologia , Transplante Heterólogo
9.
PLoS Genet ; 7(4): e1001369, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21533021

RESUMO

Differentiation is an epigenetic program that involves the gradual loss of pluripotency and acquisition of cell type-specific features. Understanding these processes requires genome-wide analysis of epigenetic and gene expression profiles, which have been challenging in primary tissue samples due to limited numbers of cells available. Here we describe the application of high-throughput sequencing technology for profiling histone and DNA methylation, as well as gene expression patterns of normal human mammary progenitor-enriched and luminal lineage-committed cells. We observed significant differences in histone H3 lysine 27 tri-methylation (H3K27me3) enrichment and DNA methylation of genes expressed in a cell type-specific manner, suggesting their regulation by epigenetic mechanisms and a dynamic interplay between the two processes that together define developmental potential. The technologies we developed and the epigenetically regulated genes we identified will accelerate the characterization of primary cell epigenomes and the dissection of human mammary epithelial lineage-commitment and luminal differentiation.


Assuntos
Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica , Histonas/metabolismo , Glândulas Mamárias Humanas/metabolismo , Antígeno CD24/genética , Diferenciação Celular , Cromatina/genética , Perfilação da Expressão Gênica/métodos , Humanos , Receptores de Hialuronatos/genética , Glândulas Mamárias Humanas/citologia , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Fatores de Transcrição/genética
10.
Cancer Res ; 71(10): 3471-81, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21398405

RESUMO

An important general concern in cancer research is how diverse genetic alterations and regulatory pathways can produce common signaling outcomes. In this study, we report the construction of cancer models that combine unique regulation and common signaling. We compared and functionally analyzed sets of genetic alterations, including somatic sequence mutations and copy number changes, in breast, colon, and pancreatic cancer and glioblastoma that had been determined previously by global exon sequencing and SNP (single nucleotide polymorphism) array analyses in multiple patients. The genes affected by the different types of alterations were mostly unique in each cancer type, affected different pathways, and were connected with different transcription factors, ligands, and receptors. In our model, we show that distinct amplifications, deletions, and sequence alterations in each cancer resulted in common signaling pathways and transcription regulation. In functional clustering, the impact of the type of alteration was more pronounced than the impact of the kind of cancer. Several pathways such as TGF-ß/SMAD signaling and PI3K (phosphoinositide 3-kinase) signaling were defined as synergistic (affected by different alterations in all four cancer types). Despite large differences at the genetic level, all data sets interacted with a common group of 65 "universal cancer genes" (UCG) comprising a concise network focused on proliferation/apoptosis balance and angiogenesis. Using unique nodal regulators ("overconnected" genes), UCGs, and synergistic pathways, the cancer models that we built could combine common signaling with unique regulation. Our findings provide a novel integrated perspective on the complex signaling and regulatory networks that underlie common human cancers.


Assuntos
Neoplasias/genética , Apoptose , Proliferação de Células , Análise por Conglomerados , Éxons , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Genética , Humanos , Modelos Biológicos , Modelos Genéticos , Mutação , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Polimorfismo de Nucleotídeo Único , Transdução de Sinais
11.
Genome Res ; 20(12): 1730-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21045080

RESUMO

We present a powerful application of ultra high-throughput sequencing, SAGE-Seq, for the accurate quantification of normal and neoplastic mammary epithelial cell transcriptomes. We develop data analysis pipelines that allow the mapping of sense and antisense strands of mitochondrial and RefSeq genes, the normalization between libraries, and the identification of differentially expressed genes. We find that the diversity of cancer transcriptomes is significantly higher than that of normal cells. Our analysis indicates that transcript discovery plateaus at 10 million reads/sample, and suggests a minimum desired sequencing depth around five million reads. Comparison of SAGE-Seq and traditional SAGE on normal and cancerous breast tissues reveals higher sensitivity of SAGE-Seq to detect less-abundant genes, including those encoding for known breast cancer-related transcription factors and G protein-coupled receptors (GPCRs). SAGE-Seq is able to identify genes and pathways abnormally activated in breast cancer that traditional SAGE failed to call. SAGE-Seq is a powerful method for the identification of biomarkers and therapeutic targets in human disease.


Assuntos
Neoplasias da Mama/metabolismo , Mama/citologia , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica/métodos , Análise de Sequência de DNA/métodos , Análise de Variância , Sequência de Bases , Teorema de Bayes , Feminino , Biblioteca Gênica , Humanos , Dados de Sequência Molecular , Sensibilidade e Especificidade
12.
BMC Syst Biol ; 4: 41, 2010 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-20377895

RESUMO

BACKGROUND: Psoriasis is complex inflammatory skin pathology of autoimmune origin. Several cell types are perturbed in this pathology, and underlying signaling events are complex and still poorly understood. RESULTS: In order to gain insight into molecular machinery underlying the disease, we conducted a comprehensive meta-analysis of proteomics and transcriptomics of psoriatic lesions from independent studies. Network-based analysis revealed similarities in regulation at both proteomics and transcriptomics level. We identified a group of transcription factors responsible for overexpression of psoriasis genes and a number of previously unknown signaling pathways that may play a role in this process. We also evaluated functional synergy between transcriptomics and proteomics results. CONCLUSIONS: We developed network-based methodology for integrative analysis of high throughput data sets of different types. Investigation of proteomics and transcriptomics data sets on psoriasis revealed versatility in regulatory machinery underlying pathology and showed complementarities between two levels of cellular organization.


Assuntos
Perfilação da Expressão Gênica , Proteômica/métodos , Psoríase/metabolismo , Transcrição Gênica , Adulto , Biópsia , Feminino , Humanos , Inflamação , Masculino , Modelos Genéticos , Modelos Estatísticos , Análise de Sequência com Séries de Oligonucleotídeos , Pele/patologia , Biologia de Sistemas
13.
BMC Genomics ; 11 Suppl 1: S8, 2010 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-20158879

RESUMO

We identified a set of genes with an unexpected bimodal distribution among breast cancer patients in multiple studies. The property of bimodality seems to be common, as these genes were found on multiple microarray platforms and in studies with different end-points and patient cohorts. Bimodal genes tend to cluster into small groups of four to six genes with synchronised expression within the group (but not between the groups), which makes them good candidates for robust conditional descriptors. The groups tend to form concise network modules underlying their function in cancerogenesis of breast neoplasms.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Identificação Biométrica , Perfilação da Expressão Gênica , Humanos
14.
Breast Cancer Res ; 12(1): R5, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20064235

RESUMO

INTRODUCTION: As part of the MicroArray Quality Control (MAQC)-II project, this analysis examines how the choice of univariate feature-selection methods and classification algorithms may influence the performance of genomic predictors under varying degrees of prediction difficulty represented by three clinically relevant endpoints. METHODS: We used gene-expression data from 230 breast cancers (grouped into training and independent validation sets), and we examined 40 predictors (five univariate feature-selection methods combined with eight different classifiers) for each of the three endpoints. Their classification performance was estimated on the training set by using two different resampling methods and compared with the accuracy observed in the independent validation set. RESULTS: A ranking of the three classification problems was obtained, and the performance of 120 models was estimated and assessed on an independent validation set. The bootstrapping estimates were closer to the validation performance than were the cross-validation estimates. The required sample size for each endpoint was estimated, and both gene-level and pathway-level analyses were performed on the obtained models. CONCLUSIONS: We showed that genomic predictor accuracy is determined largely by an interplay between sample size and classification difficulty. Variations on univariate feature-selection methods and choice of classification algorithm have only a modest impact on predictor performance, and several statistically equally good predictors can be developed for any given classification problem.


Assuntos
Algoritmos , Neoplasias da Mama/genética , Perfilação da Expressão Gênica/métodos , Área Sob a Curva , Neoplasias da Mama/química , Feminino , Humanos , Receptores de Estrogênio/análise , Tamanho da Amostra
15.
Toxicol Sci ; 112(2): 311-21, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19776212

RESUMO

The process for evaluating chemical safety is inefficient, costly, and animal intensive. There is growing consensus that the current process of safety testing needs to be significantly altered to improve efficiency and reduce the number of untested chemicals. In this study, the use of short-term gene expression profiles was evaluated for predicting the increased incidence of mouse lung tumors. Animals were exposed to a total of 26 diverse chemicals with matched vehicle controls over a period of 3 years. Upon completion, significant batch-related effects were observed. Adjustment for batch effects significantly improved the ability to predict increased lung tumor incidence. For the best statistical model, the estimated predictive accuracy under honest fivefold cross-validation was 79.3% with a sensitivity and specificity of 71.4 and 86.3%, respectively. A learning curve analysis demonstrated that gains in model performance reached a plateau at 25 chemicals, indicating that the size of current data set was sufficient to provide a robust classifier. The classification results showed that a small subset of chemicals contributed disproportionately to the misclassification rate. For these chemicals, the misclassification was more closely associated with genotoxicity status than with efficacy in the original bioassay. Statistical models were also used to predict dose-response increases in tumor incidence for methylene chloride and naphthalene. The average posterior probabilities for the top models matched the results from the bioassay for methylene chloride. For naphthalene, the average posterior probabilities for the top models overpredicted the tumor response, but the variability in predictions was significantly higher. The study provides both a set of gene expression biomarkers for predicting chemically induced mouse lung tumors and a broad assessment of important experimental and analysis criteria for developing microarray-based predictors of safety-related end points.


Assuntos
Carcinógenos/toxicidade , Exposição Ambiental , Perfilação da Expressão Gênica , Neoplasias Experimentais/induzido quimicamente , Exposição Ocupacional , Transcrição Gênica/efeitos dos fármacos , Animais , Feminino , Expressão Gênica/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos
16.
Methods Mol Biol ; 563: 177-96, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19597786

RESUMO

Analysis of microarray, SNPs, proteomics, and other high-throughput (OMICs) data is challenging because of its biological complexity and high level of technical and biological noise. One way to deal with both problems is to perform analysis with a high-fidelity annotated knowledge base of protein interactions, pathways, and functional ontologies. This knowledge base has to be structured in a computer-readable format and must include software tools for managing experimental data, analysis, and reporting. Here we present MetaDiscovery, an integrated platform for functional data analysis which is being developed at GeneGo for the past 8 years. On the content side, MetaDiscovery encompasses a comprehensive database of protein interactions of different types, pathways, network models and 10 functional ontologies covering human, mouse, and rat proteins. The analytical toolkit includes tools for gene/protein list enrichment analysis, statistical "interactome" tool for identification of over- and under-connected proteins in the data set, and a network module made up of network generation algorithms and filters. The suite also features MetaSearch, an application for combinatorial search of the database content, as well as a Java-based tool called MapEditor for drawing and editing custom pathway maps. Applications of MetaDiscovery include identification of potential biomarkers and drug targets, pathway hypothesis generation, analysis of biological effects for novel small molecule compounds, and clinical applications (analysis of large cohorts of patients and translational and personalized medicine).


Assuntos
Genômica/métodos , Bases de Conhecimento , Mapeamento de Interação de Proteínas/métodos , Proteínas/metabolismo , Software , Biologia de Sistemas/métodos , Animais , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Genéticas , Descoberta de Drogas , Humanos , Redes e Vias Metabólicas , Proteínas/genética , Bibliotecas de Moléculas Pequenas/farmacologia
17.
BMC Med Genomics ; 2: 24, 2009 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-19426536

RESUMO

BACKGROUND: Astrocyte activation is a characteristic response to injury in the central nervous system, and can be either neurotoxic or neuroprotective, while the regulation of both roles remains elusive. METHODS: To decipher the regulatory elements controlling astrocyte-mediated neurotoxicity in glaucoma, we conducted a systems-level functional analysis of gene expression, proteomic and genetic data associated with reactive optic nerve head astrocytes (ONHAs). RESULTS: Our reconstruction of the molecular interactions affected by glaucoma revealed multi-domain biological networks controlling activation of ONHAs at the level of intercellular stimuli, intracellular signaling and core effectors. The analysis revealed that synergistic action of the transcription factors AP-1, vitamin D receptor and Nuclear Factor-kappaB in cross-activation of multiple pathways, including inflammatory cytokines, complement, clusterin, ephrins, and multiple metabolic pathways. We found that the products of over two thirds of genes linked to glaucoma by genetic analysis can be functionally interconnected into one epistatic network via experimentally-validated interactions. Finally, we built and analyzed an integrative disease pathology network from a combined set of genes revealed in genetic studies, genes differentially expressed in glaucoma and closely connected genes/proteins in the interactome. CONCLUSION: Our results suggest several key biological network modules that are involved in regulating neurotoxicity of reactive astrocytes in glaucoma, and comprise potential targets for cell-based therapy.

18.
BMC Syst Biol ; 3: 36, 2009 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-19309513

RESUMO

BACKGROUND: The identification of key target nodes within complex molecular networks remains a common objective in scientific research. The results of pathway analyses are usually sets of fairly complex networks or functional processes that are deemed relevant to the condition represented by the molecular profile. To be useful in a research or clinical laboratory, the results need to be translated to the level of testable hypotheses about individual genes and proteins within the condition of interest. RESULTS: In this paper we describe novel computational methodology capable of predicting key regulatory genes and proteins in disease- and condition-specific biological networks. The algorithm builds shortest path network connecting condition-specific genes (e.g. differentially expressed genes) using global database of protein interactions from MetaCore. We evaluate the number of all paths traversing each node in the shortest path network in relation to the total number of paths going via the same node in the global network. Using these numbers and the relative size of the initial data set, we determine the statistical significance of the network connectivity provided through each node. We applied this method to gene expression data from psoriasis patients and identified many confirmed biological targets of psoriasis and suggested several new targets. Using predicted regulatory nodes we were able to reconstruct disease pathways that are in excellent agreement with the current knowledge on the pathogenesis of psoriasis. CONCLUSION: The systematic and automated approach described in this paper is readily applicable to uncovering high-quality therapeutic targets, and holds great promise for developing network-based combinational treatment strategies for a wide range of diseases.


Assuntos
Doença/genética , Proteínas/metabolismo , Biologia de Sistemas/métodos , Algoritmos , Fenótipo , Proteômica , Psoríase/genética , Psoríase/metabolismo , Reprodutibilidade dos Testes
19.
Proteomics Clin Appl ; 3(11): 1326, 2009 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-20098637

RESUMO

Patients with ulcerative colitis (UC) have an increased risk for developing colorectal cancer. Because UC tumorigenesis is associated with genomic field defects that can extend throughout the entire colon, including the non-dysplastic mucosa; we hypothesized that the same field defect will include abnormally expressed proteins. Here we applied proteomics to study the protein expression of UC neoplastic progression. The protein profiles of colonic epithelium were compared from 1) UC patients without dysplasia (non-progressors); 2) none-dysplastic colonic tissue from UC patient with high-grade dysplasia or cancer (progressors); 3) high-grade dysplastic tissue from UC progressors and 4) normal colon. We identified protein differential expression associated with UC neoplastic progression. Proteins relating to mitochondria, oxidative activity, calcium-binding proteins were some of interesting classes of these proteins. Network analysis discovered that Sp1 and c-myc proteins may play roles in UC early and late stages of neoplastic progression, respectively. Two over-expressed proteins in the non-dysplastic tissue of UC progressors, CPS1 and S100P, were further confirmed by IHC analysis. Our study provides insight into the molecular events associated with UC neoplastic progression, which could be exploited for the development of protein biomarkers in fields of non-dysplastic mucosa that identify a patient's risk for UC dysplasia.

20.
BMC Biol ; 6: 49, 2008 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-19014478

RESUMO

BACKGROUND: In recent years, the maturation of microarray technology has allowed the genome-wide analysis of gene expression patterns to identify tissue-specific and ubiquitously expressed ('housekeeping') genes. We have performed a functional and topological analysis of housekeeping and tissue-specific networks to identify universally necessary biological processes, and those unique to or characteristic of particular tissues. RESULTS: We measured whole genome expression in 31 human tissues, identifying 2374 housekeeping genes expressed in all tissues, and genes uniquely expressed in each tissue. Comprehensive functional analysis showed that the housekeeping set is substantially larger than previously thought, and is enriched with vital processes such as oxidative phosphorylation, ubiquitin-dependent proteolysis, translation and energy metabolism. Network topology of the housekeeping network was characterized by higher connectivity and shorter paths between the proteins than the global network. Ontology enrichment scoring and network topology of tissue-specific genes were consistent with each tissue's function and expression patterns clustered together in accordance with tissue origin. Tissue-specific genes were twice as likely as housekeeping genes to be drug targets, allowing the identification of tissue 'signature networks' that will facilitate the discovery of new therapeutic targets and biomarkers of tissue-targeted diseases. CONCLUSION: A comprehensive functional analysis of housekeeping and tissue-specific genes showed that the biological function of housekeeping and tissue-specific genes was consistent with tissue origin. Network analysis revealed that tissue-specific networks have distinct network properties related to each tissue's function. Tissue 'signature networks' promise to be a rich source of targets and biomarkers for disease treatment and diagnosis.


Assuntos
Regulação da Expressão Gênica , Genes/genética , Especificidade de Órgãos , Análise por Conglomerados , Redes Reguladoras de Genes/genética , Humanos , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...