Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 269(49): 31214-23, 1994 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-7983064

RESUMO

Desmosomes are adhesive intercellular junctions that act as cell surface attachment sites for intermediate filaments. The desmosomal glycoproteins, desmogleins and desmocollins, are members of the cadherin family of adhesion molecules. In addition, desmoglein has been shown to coimmunoprecipitate with the junctional protein plakoglobin. To characterize further the interaction between plakoglobin and the desmosomal cadherins, stable mouse fibroblast (L-cells) cell lines were generated that express plakoglobin, desmoglein and plakoglobin, or desmocollin and plakoglobin. L-cell lines transfected with a plasmid encoding human plakoglobin expressed plakoglobin mRNA but very little plakoglobin protein. However, plakoglobin protein was expressed at high levels in L-cells coexpressing either desmoglein or desmocollin. In addition, both desmocollin and desmoglein were found to coimmunoprecipitate with plakoglobin. The transient expression of desmoglein in L-cell lines expressing plakoglobin mRNA resulted in the formation of a complex between plakoglobin and desmoglein and in the accumulation of plakoglobin protein. Furthermore, the rate of plakoglobin protein degradation was decreased by 15-20-fold in cell lines expressing either desmoglein or desmocollin. These results demonstrate that the desmosomal cadherins posttranslationally regulate plakoglobin expression by decreasing the rate of plakoglobin degradation.


Assuntos
Caderinas/fisiologia , Proteínas do Citoesqueleto/metabolismo , Regulação da Expressão Gênica , Processamento de Proteína Pós-Traducional , Transativadores , Animais , Sequência de Bases , Células Cultivadas , Citoplasma/metabolismo , Proteínas do Citoesqueleto/genética , Desmocolinas , Desmogleínas , Desmoplaquinas , Desmossomos/metabolismo , Humanos , Células L , Glicoproteínas de Membrana/metabolismo , Camundongos , Dados de Sequência Molecular , Testes de Precipitina , beta Catenina , gama Catenina
2.
Biophys Chem ; 50(1-2): 97-112, 1994 May.
Artigo em Inglês | MEDLINE | ID: mdl-8011944

RESUMO

Desmosomes are intercellular junctions that function in cell-cell adhesion and attachment of intermediate filaments (IF) to the cell surface. Desmogleins and desmocollins are the major components of the transmembrane adhesion complex, whereas desmoplakins (DPs) are the most prominent components of the cytoplasmic plaque. Based on sequence similarity, desmogleins and desmocollins are related to the calcium-dependent homophilic adhesion molecules known as cadherins. Like the classical cadherins, the desmosomal cadherins contain four homologous extracellular domains bearing putative calcium-binding sites, a single transmembrane spanning domain, and a C-terminal cytoplasmic tail. Molecules in the desmoglein subclass contain a unique C-terminal extension within which is found a repeating motif that is predicted to form two beta-strands and two turns. Stable cell lines expressing desmoglein 1 have been generated from normally non-adherent L cell fibroblasts, to study the contribution of this cadherin to desmosomal adhesion. The predicted sequence of desmoplakin (DP) I suggests it will form homodimers comprising a central alpha-helical coiled-coil rod and two globular end domains. The C-terminus contains three regions with significant homology, each of which is made up of a 38-residue motif also found in two other molecules involved in organization of IF, bullous pemphigoid antigen and plectin. Ectopically expressed polypeptides including the C-terminus of DP I specifically align with keratin and vimentin IF in cultured cells, whereas those lacking this domain do not align with IF. The last 68 amino acids of DP are required for alignment along keratin but not vimentin IF, and residues 48-68 from the C-terminal end are critical for this interaction. These results suggest that the C-terminus of DP plays a role in the attachment of IF to the desmosome and that a specific site is necessary for interaction with keratin IF. A sequence at the most N-terminal end of DP appears to be required for efficient incorporation into the desmosomal plaque. Interestingly, this region has not been reported to be present in the homologous bullous pemphigoid antigen or plectin molecules and may represent a desmosomal targeting sequence.


Assuntos
Proteínas do Citoesqueleto/fisiologia , Proteínas do Citoesqueleto/ultraestrutura , Desmossomos/fisiologia , Desmossomos/ultraestrutura , Animais , Caderinas/genética , Caderinas/fisiologia , Bovinos , Adesão Celular/fisiologia , Comunicação Celular/fisiologia , Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , DNA Complementar/análise , Desmocolinas , Desmogleína 1 , Desmogleínas , Desmoplaquinas , Junções Comunicantes/fisiologia , Células L , Proteínas de Membrana/fisiologia , Proteínas de Membrana/ultraestrutura , Camundongos , Relação Estrutura-Atividade
3.
J Cell Sci ; 99 ( Pt 4): 809-21, 1991 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-1770008

RESUMO

Desmosomes are adhesive cell junctions found in great abundance in tissues that experience mechanical stress. The transmembrane desmosomal glycoproteins have been proposed to play a role in cell adhesion; desmoglein I (DGI) is a major member of this class of desmosomal molecules. However, evidence supporting a role for DGI in cell adhesion or in the plaque is lacking. In order to begin to understand DGI function we have identified human cDNA clones encoding the entire mature polypeptide of 1000 amino acids. Our data suggest that like the bovine DGI molecule human DGI is highly related to the calcium-dependent class of cell adhesion molecules known as cadherins. Four related extracellular domains located in the amino-terminal domain of the molecule contain putative calcium binding sites originally identified in the cadherins. The highest degree of similarity between human N-cadherin and human DGI, and likewise between bovine DGI and human DGI, is greatest in the most amino-terminal extracellular domain. This suggests a conserved functional role for the extracellular domains, perhaps in calcium-mediated cell adhesion. The cytoplasmic portion of the molecule contains a cadherin-like region and, like bovine DGI, a carboxy-terminal tail that is not present in the cadherins, comprising three additional domains. One of these contains a novel repeating motif of 29 +/- 1 residues, first identified in bovine DGI. Each of the highly homologous repeating units is likely to consist of two beta-strands and two turns with special characteristics. Five amino acids that are identical in bovine and human DGI lie in the second of the two predicted beta-strands, and intriguingly contain putative target sites for protein kinase C. On the basis of structural analysis, a model predicting the disposition of human DGI domains in the desmosome is proposed. Northern analysis suggests that unlike bovine epidermis, which expresses a single mRNA of reported size approximately 7.6 kb, human foreskin and cultured keratinocytes display a complex pattern with bands of approximately 7.2, 4.0 and 3.0 kb. Each of these cross-hybridizing mRNAs is coordinately expressed in normal human keratinocytes in response to long-term culture and increased calcium.


Assuntos
Proteínas do Citoesqueleto/química , Desmossomos/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Caderinas/química , Caderinas/genética , Cálcio/metabolismo , Bovinos , Células Cultivadas , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , DNA/genética , Desmogleína 1 , Desmogleínas , Desmoplaquinas , Desmossomos/metabolismo , Regulação da Expressão Gênica , Humanos , Queratinócitos/química , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência
4.
Exp Cell Res ; 193(1): 134-43, 1991 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-1995289

RESUMO

The expression and distribution of the desmosomal plaque proteins, desmoplakins (DPs) I and II, were studied in nontumorigenic (RBE-8) and a series of tumorigenic (AY34, R-4909, SS-24B, RBTCC-8, and 804G) rat bladder epithelial cell lines. These cell lines ranged from slow-growing papillary transitional cells (AY34) to rapidly metastatic carcinoma cells (RBTCC-8). DPs I and II were shown by immunoblotting and Northern analysis to be present in nontumorigenic RBE-8 cells as well as in all of the tumorigenic cell lines, albeit in differing amounts. Immunofluorescence microscopy revealed striking differences in DP distribution, corresponding in general with increases in tumorigenic potential. Whereas DPs of normal RBE-8 cells and less tumorigenic AY34 cells were localized predominantly at cell interfaces, the more tumorigenic lines exhibited a high proportion of DP in the form of cytoplasmic dots, a distribution reminiscent of that seen in epithelial cells maintained in low levels of extracellular calcium. In 804G cells, which represented the most extreme example of this phenomenon, the majority of DPs were organized as cytoplasmic dots. Electron microscopy revealed intermediate filament (IF)-associated spots in the cytoplasm as well as an elaborate array of IF-associated plaques at the cell-substratum interface. The IF-associated spots in the cytoplasm reacted with anti-DP antibody in immunogold labeling experiments while those at the cell-substratum did not react. In more dense cultures of 804G cells, certain cells stratified and expressed increased amounts of DP followed by the induction of new keratins including those of the skin type. Decreasing extracellular calcium resulted in a rearrangement of DP in each cell line; staining at cell-cell interfaces disappeared and was replaced with a pattern of cytoplasmic dots. These results demonstrate a possible relationship between desmosome assembly and/or maintenance and tumorigenic potential.


Assuntos
Proteínas do Citoesqueleto/biossíntese , Desmossomos/fisiologia , Proteínas de Neoplasias/biossíntese , Neoplasias da Bexiga Urinária/metabolismo , Animais , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Citoplasma/química , Proteínas do Citoesqueleto/genética , Desmoplaquinas , Epitélio/metabolismo , Imunofluorescência , Junções Intercelulares/química , Proteínas de Neoplasias/genética , RNA Mensageiro/metabolismo , Ratos , Células Tumorais Cultivadas , Bexiga Urinária/metabolismo , Bexiga Urinária/ultraestrutura , Neoplasias da Bexiga Urinária/patologia
5.
J Cell Sci ; 97 ( Pt 2): 247-57, 1990 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-2277092

RESUMO

Desmosomes are major intercellular junctions found in association with intermediate filaments in epithelial, cardiac and arachnoidal tissue. Desmoplakins I and II (DPI and II) are highly related proteins localized in the innermost part of the desmosomal plaque and are candidates for linking intermediate filaments (IF) to the desmosomal complex. While investigators agree that DPI is present in all epithelia, they disagree on the distribution of DPII. Some have reported DPII to be restricted to stratified tissue and have furthermore suggested that the expression of DPII may be linked to stratification. We have compared the expression of DPI and II at the mRNA and protein levels in cell lines derived from simple, transitional and stratified epithelia. Northern blot analysis revealed DPI and II mRNA to be present in all cell lines as well as simple and stratified epithelial tissues. However, DPII mRNA could not be detected in cardiac muscle tissue. Immunoblotting and immunoprecipitation demonstrated the presence of DPI and II in all cell lines at the whole-cell protein level as well as in association with cytoskeletal fractions. Immunofluorescence staining was used to correlate the biochemical findings with the localization of DPI and II. While most cell lines exhibited typical intercellular and in many cases cytoplasmic DP staining, T24 cells exhibited predominantly diffuse and dotty cytoplasmic staining. In addition, we investigated whether changes in DPI and II expression occurred following calcium-induced cell contact formation and stratification in the human pharyngeal cell line, FaDu. No significant changes in mRNA or whole-cell protein levels were observed during a period of 5 days following the calcium switch. However, immunoblotting revealed a significant increase in DPI and II levels in the insoluble protein pool during desmosome formation. These observations indicated a possible recruitment of soluble DPI/II into an insoluble pool after induction of desmosome assembly by the calcium switch, consistent with earlier reports for MDCK cells. In summary, our results suggest that the expression of DPII is not strictly linked to stratification or differentiation; however, the apparent absence of DPII mRNA from cardiac muscle suggests it may not be a constituent of all desmosomes.


Assuntos
Proteínas do Citoesqueleto/biossíntese , Desmossomos/fisiologia , Epitélio/metabolismo , Cálcio/fisiologia , Diferenciação Celular , Células Cultivadas , Proteínas do Citoesqueleto/genética , Desmoplaquinas , Imunofluorescência , Regulação da Expressão Gênica , Humanos , RNA Mensageiro/biossíntese , Células Tumorais Cultivadas
7.
J Biol Chem ; 265(5): 2603-12, 1990 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-1689290

RESUMO

Desmoplakins (DPs) I and II are two major related proteins located in the innermost portion of the desmosomal plaque where it is thought they may play a role in attaching intermediate filaments (IF) to the cell surface. We have isolated and sequenced human cDNA clones encoding two major DP domains and a portion of a third. These clones can be divided into two classes that we believe to represent DPI and DPII cDNAs; our evidence suggests that the DPII message is derived at least in part from the processing of a larger transcript encoded by a single gene. Computer-aided analysis of the DPI-predicted amino acid sequence indicates that the central domain, which contains the heptad repeat characteristic of many alpha-fibrous proteins, will participate in the formation of a coiled coil dimer approximately 130 nm in length. The periodicity of acidic and basic residues in the rod suggests that DPI will aggregate with itself or similar molecules into higher order filamentous structures. The carboxyl terminus contains three regions with significant homology, each of which comprises almost five repeats of a 38-residue motif. It is likely that these regions each fold into a compact globular conformation stabilized by intrachain ionic interactions. Comparison of the predicted amino acid sequence of a cDNA encoding a portion of the 230-kDa bullous pemphigoid antigen (Stanley, J. R., Tanaka, T., Mueller, S., Klaus-Kovtun, V., and Roop, D. (1988) J. Clin. Invest. 82, 1864-1870) with DP revealed the presence of a 38-residue repeat with striking similarity to that of the DPs. Significantly, the periodicity in acidic and basic residues of these domains is the same as that found in the 1B rod domain of IF proteins. This suggests the possibility that the DPs might interact with IF via their common periodicity of charged residues.


Assuntos
Proteínas do Citoesqueleto/genética , Desmossomos/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Proteínas do Citoesqueleto/biossíntese , Sondas de DNA , Desmoplaquinas , Análise de Fourier , Biblioteca Gênica , Humanos , Queratinócitos/metabolismo , Substâncias Macromoleculares , Masculino , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Conformação Proteica , RNA/genética , RNA/isolamento & purificação , Proteínas Recombinantes de Fusão/biossíntese , Sequências Repetitivas de Ácido Nucleico , Mapeamento por Restrição , Homologia de Sequência do Ácido Nucleico , Pele/metabolismo , Software
9.
J Protozool ; 35(4): 590-601, 1988 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-2974078

RESUMO

Euplotes crassus, like other hypotrichous ciliated protozoa, eliminates most of its micronuclear chromosomal DNA in the process of forming the small linear DNA molecules that comprise the macronuclear genome. By characterizing randomly selected lambda phage clones of E. crassus micronuclear DNA, we have determined the distribution of repetitive and unique sequences and the arrangement of macronuclear genes relative to eliminated DNA. This allows us to compare the E. crassus micronuclear genome organization to that of another distantly related hypotrichous ciliate, Oxytricha nova. The clones from E. crassus segregate into three prevalent classes: those containing primarily eliminated repetitive DNA (Class I); those containing macronuclear genes in addition to repetitive sequences (Class II); and those containing only eliminated unique sequence DNA (Class III). All of the repetitive sequences in these clones belong to the same highly abundant repetitive element family. Our results demonstrate that the sequence organization of the E. crassus and O. nova micronuclear genomes is related in that the macronuclear genes are clustered together in the micronuclear genome and the eliminated unique sequences occur in long stretches that are uninterrupted by repetitive sequences. In both organisms a single repetitive element family comprises the majority of the eliminated interspersed middle repetitive DNA and appears to be preferentially associated with the macronuclear sequence clusters. The similarities in the sequence organization in these two organisms suggest that clustering of macronuclear genes plays a role in the chromosome fragmentation process.


Assuntos
Núcleo Celular/ultraestrutura , Cilióforos/genética , DNA , Animais , Bacteriófago lambda/genética , Sequência de Bases , Southern Blotting , Cilióforos/ultraestrutura , Clonagem Molecular , Hibridização de Ácido Nucleico , Sequências Repetitivas de Ácido Nucleico , Mapeamento por Restrição , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...