Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Environ Res ; 92(11): 1948-1955, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32363700

RESUMO

Solid residues such as primary sludge (PS), waste activated sludge (WAS), and food waste (FW) can be stabilized through anaerobic digestion (AD). Application of the thermal hydrolysis process (THP) prior to AD results in several benefits in AD and dewatering. However, soluble recalcitrant compounds associated with Maillard reactions have been identified after THP which can impact downstream processes and water discharge limits. In this study, the soluble colloidal chemical oxygen demand, color, ultraviolet absorbance at 254 nm and dissolved organic nitrogen in seven full-scale THP facilities were quantified and compared. The THP substrate influenced the concentration of soluble melanoidin-associated compounds in the digestates. THP implementation in five water resource recovery facilities (WRRFs) was modeled and found to give a 3-8 mg/L increase on the water effluent COD concentration depending on the PS/WAS ratio. The results provide novel information useful in planning new WRRFs and optimization of existing facilities. PRACTITIONER POINTS: High amounts of WAS in substrate resulted in higher concentrations of CODsc, color and dissolved organic nitrogen in the digestate. Food waste treated at 145°C showed equal or lower concentrations of all components compared with sludge operated at 165°C. Installation of THP will increase the COD concentration in the water effluent of a water resource recovery facility. The characteristics of the THP substrate are important to consider in cost/benefit analysis when planning the installation of THP.


Assuntos
Alimentos , Eliminação de Resíduos , Anaerobiose , Hidrólise , Esgotos , Eliminação de Resíduos Líquidos
2.
Water Sci Technol ; 80(7): 1338-1346, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31850885

RESUMO

Organic waste fractions such as sewage sludge, food waste and manure can be stabilized by anaerobic digestion (AD) to produce renewable energy in the form of biogas. Following AD, the digested solid fraction (digestate) is usually dewatered to reduce the volume before transportation. Post-AD treatments such as the Post-AD thermal hydrolysis process (Post-AD THP) have been developed to improve the dewatering, but the mode of action is not well understood. In this study, samples from 32 commercial full-scale plants were used to assess the impact of Post-AD THP on a broad range of raw materials. Maximum dewatered cake solids after Post-AD THP was predicted by thermogravimetric analysis (TGA). Post-AD THP changed the moisture distribution of the samples by increasing the free water fraction. A consistent improvement in predicted dewatered cake solids was achieved across the 32 samples tested, on average increasing the dry solids concentration by 87%. A full-scale trial showed that dewatering Post-AD THP digestate at 80 °C improved dewatered cake solids above the predictions by TGA at 35 °C. In conclusion, dewatered cake solids were significantly improved by Post-AD THP, reducing the volume of dewatered cake for disposal.


Assuntos
Alimentos , Eliminação de Resíduos , Anaerobiose , Hidrólise , Esgotos , Eliminação de Resíduos Líquidos
3.
Water Res ; 158: 350-358, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31055015

RESUMO

Efficient digestate dewatering is crucial to reduce the volume and transportation cost of solid residues from anaerobic digestion (AD) plants. Large variations in dewatered cake solids have been reported and predictive models are therefore important in design and operation of such plants. However, current predictive models lack validation across several digestion substrates, pre-treatments and full-scale plants. In this study, we showed that thermogravimetric analysis is a reliable prediction model for dewatered cake solids using digestates from 15 commercial full-scale plants. The tested digestates originated from different substrates, with and without the pre-AD thermal hydrolysis process (THP). Moreover, a novel combined physicochemical parameter (C/N•ash) characterizing different digestate blends was identified by multiplying the C/N ratio with ash content of the dried solids. Using samples from 22 full-scale wastewater, food waste and co-waste plants, a linear relationship was found between C/N•ash and predicted cake solids for digestates with and without pre-AD THP. Pre-AD THP improved predicted cake solids by increasing the amount of free water. However, solids characteristics like C/N ratio and ash content had a more profound influence on the predicted cake solids than pre-AD THP and type of dewatering device. Finally, C/N•ash was shown to have a linear relationship to cake solids and reported polymer dose from eight full-scale pre-AD THP plants. In conclusion, we identified the novel parameter C/N•ash which can be used to predict dewatered cake solids regardless of dewatering device and sludge origin.


Assuntos
Alimentos , Eliminação de Resíduos , Anaerobiose , Esgotos , Águas Residuárias
4.
Sci Rep ; 7(1): 1028, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28432348

RESUMO

Several studies have demonstrated that injection of double-stranded RNAs (dsRNA) homologous to mRNA for the white spot syndrome virus (WSSV) viral protein 28 (VP28) can induce protection in shrimp against WSSV through RNA interference (RNAi). In comparison to shrimp injected with either PBS or a green fluorescent protein (GFP) nonspecific dsRNA, we obtained nearly complete protection against WSSV infection in shrimp injected with VP28 dsRNA. Upregulation of host genes associated with small RNA silencing was measured 48 hours post treatment in groups injected with dsRNA, and although the VP28-treated group remained moderately upregulated after challenge with WSSV, many-fold higher induction was observed in both control groups reflecting the ongoing viral infection. RNA sequencing of VP28-treated shrimp demonstrated a siRNA population dominated by high levels of 22 nt long molecules narrowly targeting the VP28 mRNA both before and after challenge with WSSV. Conversely, while no siRNAs targeting WSSV were detected before challenge, a broad response of 22 nt siRNAs mapping across the entire WSSV genome were found in both control groups after challenge. These results give detailed insight to how dsRNA targeting VP28 function to induce protection against WSSV, by generating a highly focused population of 22 nt long siRNA molecules.


Assuntos
Penaeidae/crescimento & desenvolvimento , RNA Interferente Pequeno/farmacologia , Proteínas do Envelope Viral/genética , Vírus da Síndrome da Mancha Branca 1/genética , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Penaeidae/genética , Penaeidae/virologia , Vírus de RNA/genética , Análise de Sequência de RNA , Proteínas do Envelope Viral/efeitos dos fármacos , Vírus da Síndrome da Mancha Branca 1/efeitos dos fármacos
5.
Dis Aquat Organ ; 120(1): 39-47, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27304869

RESUMO

Conventional isolation and identification based on phenotypic characteristics is challenging with the highly fastidious, intracellular bacterium Francisella noatunensis subsp. orientalis (Fno). Here, we developed a duplex PCR method for simultaneous detection of the Francisella genus and Fno in one PCR reaction and an in situ hybridization method for paraffin section based diagnosis of Fno. The PCR results showed genus- and species-specific bands (1140 and 203 bp) from Fno but only one genus-specific band (1140 bp) from F. noatunensis subsp. noatunensis. Sensitivity of the duplex PCR assay revealed a detection limit of 20 to 200 fg genomic DNA (~10 to 100 genome equivalents) depending on DNA template extraction methods. The newly developed duplex PCR assay could be used to detect Fno from clinically sick fish exhibiting signs of visceral granulomas and would also be able to detect Fno infection in naturally diseased fish without symptoms of francisellosis, indicating potential application for diagnosis of field samples. The in situ hybridization assay using Fno species-specific probe revealed positive signals in multiple organs including the spleen, liver, kidney, gills and intestine of infected fish.


Assuntos
Doenças dos Peixes/diagnóstico , Francisella/isolamento & purificação , Infecções por Bactérias Gram-Negativas/veterinária , Hibridização In Situ/métodos , Reação em Cadeia da Polimerase/métodos , Tilápia , Animais , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/diagnóstico , Infecções por Bactérias Gram-Negativas/microbiologia , Sensibilidade e Especificidade
6.
PLoS One ; 9(9): e107132, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25203050

RESUMO

The Caliciviridae is a family of viruses infecting humans, a wide range of animals, birds and marine fish and mammals, resulting in a wide spectrum of diseases. We describe the identification and genetic characterization of a novel calicivirus replicating in Atlantic salmon. The virus has a high prevalence in farmed salmon and is found in fish suffering from several diseases and conditions and also in presumable healthy fish. A challenge and vaccination trial shows that the calicivirus replicates in Atlantic salmon and establishes a systemic infection, which can be reduced by vaccination with formalin-inactivated virus preparation. The virus, named Atlantic salmon calicivirus (ASCV), is found in two genetically distinct variants, a cell culture isolated and a variant sequenced directly from field material. The genomes are 7,4 kb and contain two open reading frames where typical conserved amino acid motifs and domains predict a gene order reminiscent of calicivirus genomes. Phylogenetic analysis performed on extracted capsid amino acid sequences segregated the two ASCV variants in a unique cluster sharing root with the branch of noroviruses infecting humans and the unassigned Tulane virus and St-Valérien like viruses, infecting rhesus monkey and pig, respectively, with relatively large distance to the marine calicivirus subgroup of vesiviruses. Based on the analyses presented, the ASCV is predicted to represent a new genus of Caliciviridae for which we propose the name Salovirus.


Assuntos
Infecções por Caliciviridae/virologia , Caliciviridae/genética , Salmo salar/virologia , Animais , Proteínas do Capsídeo/genética , Células Cultivadas , Doenças dos Peixes/virologia , Genoma Viral/genética , Macaca mulatta/virologia , Filogenia , Suínos/virologia
7.
BMC Genomics ; 13: 205, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22646522

RESUMO

BACKGROUND: Cardiomyopathy syndrome (CMS) is a severe disease of Atlantic salmon (Salmo salar L.) associated with significant economic losses in the aquaculture industry. CMS is diagnosed with a severe inflammation and degradation of myocardial tissue caused by a double-stranded RNA virus named piscine myocarditis virus (PMCV), with structural similarities to the Totiviridae family. In the present study we characterized individual host responses and genomic determinants of different disease outcomes. RESULTS: From time course studies of experimentally infected Atlantic salmon post-smolts, fish exhibited different outcomes of infection and disease. High responder (HR) fish were characterized with sustained and increased viral load and pathology in heart tissue. Low responder (LR) fish showed declining viral load from 6-10 weeks post infection (wpi) and absence of pathology. Global gene expression (SIQ2.0 oligonucleotide microarray) in HR and LR hearts during infection was compared, in order to characterize differences in the host response and to identify genes with expression patterns that could explain or predict the different outcomes of disease. Virus-responsive genes involved in early antiviral and innate immune responses were upregulated equally in LR and HR at the first stage (2-4 wpi), reflecting the initial increase in virus replication. Repression of heart muscle development was identified by gene ontology enrichment analyses, indicating the early onset of pathology. By six weeks both responder groups had comparable viral load, while increased pathology was observed in HR fish. This was reflected by induced expression of genes implicated in apoptosis and cell death mechanisms, presumably related to lymphocyte regulation and survival. In contrast, LR fish showed earlier activation of NK cell-mediated cytotoxicity and NOD-like receptor signaling pathways. At the late stage of infection, increased pathology and viral load in HR was accompanied by a broad activation of genes involved in adaptive immunity and particularly T cell responses, probably reflecting the increased infiltration and homing of virus-specific T cells to the infected heart. This was in sharp contrast to LR fish, where recovery and reduced viral load was associated with a significantly reduced transcription of adaptive immunity genes and activation of genes involved in energy metabolism. CONCLUSIONS: In contrast to LR, a stronger and sustained expression of genes involved in adaptive immune responses in heart tissue of HR at the late stage of disease probably reflected the increased lymphocyte infiltration and pathological outcome. In addition to controlled adaptive immunity and activation of genes involved in cardiac energy metabolism in LR at the late stage, recovery of this group could also be related to an earlier activation of NOD-like receptor signaling and NK cell-mediated cytotoxicity pathways.


Assuntos
Cardiomiopatias/genética , Salmo salar/genética , Imunidade Adaptativa/genética , Animais , Apoptose/genética , Cardiomiopatias/patologia , Cardiomiopatias/virologia , Metabolismo Energético/genética , Doenças dos Peixes/genética , Doenças dos Peixes/patologia , Doenças dos Peixes/virologia , Coração/crescimento & desenvolvimento , Coração/virologia , Análise de Sequência com Séries de Oligonucleotídeos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Totiviridae/fisiologia , Transcriptoma/genética , Carga Viral
8.
BMC Genomics ; 12: 459, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21943289

RESUMO

BACKGROUND: Cardiomyopathy syndrome (CMS) is a disease associated with severe myocarditis primarily in adult farmed Atlantic salmon (Salmo salar L.), caused by a double-stranded RNA virus named piscine myocarditis virus (PMCV) with structural similarities to the Totiviridae family. Here we present the first characterisation of host immune responses to CMS assessed by microarray transcriptome profiling. RESULTS: Unvaccinated farmed Atlantic salmon post-smolts were infected by intraperitoneal injection of PMCV and developed cardiac pathology consistent with CMS. From analysis of heart samples at several time points and different tissues at early and clinical stages by oligonucleotide microarrays (SIQ2.0 chip), six gene sets representing a broad range of immune responses were identified, showing significant temporal and spatial regulation. Histopathological examination of cardiac tissue showed myocardial lesions from 6 weeks post infection (wpi) that peaked at 8-9 wpi and was followed by a recovery. Viral RNA was detected in all organs from 4 wpi suggesting a broad tissue tropism. High correlation between viral load and cardiac histopathology score suggested that cytopathic effect of infection was a major determinant of the myocardial changes. Strong and systemic induction of antiviral and IFN-dependent genes from 2 wpi that levelled off during infection, was followed by a biphasic activation of pathways for B cells and MHC antigen presentation, both peaking at clinical pathology. This was preceded by a distinct cardiac activation of complement at 6 wpi, suggesting a complement-dependent activation of humoral Ab-responses. Peak of cardiac pathology and viral load coincided with cardiac-specific upregulation of T cell response genes and splenic induction of complement genes. Preceding the reduction in viral load and pathology, these responses were probably important for viral clearance and recovery. CONCLUSIONS: By comparative analysis of gene expression, histology and viral load, the temporal and spatial regulation of immune responses were characterised and novel immune genes identified, ultimately leading to a more complete understanding of host-virus responses and pathology and protection in Atlantic salmon during CMS.


Assuntos
Cardiomiopatias/veterinária , Doenças dos Peixes/imunologia , Salmo salar/genética , Salmo salar/imunologia , Transcriptoma , Animais , Cardiomiopatias/genética , Cardiomiopatias/imunologia , Doenças dos Peixes/genética , Doenças dos Peixes/virologia , Expressão Gênica , Perfilação da Expressão Gênica , Coração/virologia , Miocárdio/patologia , Análise de Sequência com Séries de Oligonucleotídeos , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Salmo salar/virologia , Totiviridae/patogenicidade , Carga Viral
9.
J Virol ; 85(11): 5275-86, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21411528

RESUMO

Cardiomyopathy syndrome (CMS) of farmed and wild Atlantic salmon (Salmo salar L.) is a disease of yet unknown etiology characterized by a necrotizing myocarditis involving the atrium and the spongious part of the heart ventricle. Here, we report the identification of a double-stranded RNA virus likely belonging to the family Totiviridae as the causative agent of the disease. The proposed name of the virus is piscine myocarditis virus (PMCV). On the basis of the RNA-dependent RNA polymerase (RdRp) sequence, PMCV grouped with Giardia lamblia virus and infectious myonecrosis virus of penaeid shrimp. The genome size of PMCV is 6,688 bp, with three open reading frames (ORFs). ORF1 likely encodes the major capsid protein, while ORF2 encodes the RdRp, possibly expressed as a fusion protein with the ORF1 product. ORF3 seems to be translated as a separate protein not described for any previous members of the family Totiviridae. Following experimental challenge with cell culture-grown virus, histopathological changes are observed in heart tissue by 6 weeks postchallenge (p.c.), with peak severity by 9 weeks p.c. Viral genome levels detected by real-time reverse transcription (RT)-PCR peak earlier at 6 to 7 weeks p.c. The virus genome is detected by in situ hybridization in degenerate cardiomyocytes from clinical cases of CMS. Virus genome levels in the hearts from clinical field cases correlate well with the severity of histopathological changes in heart tissue. The identification of the causative agent for CMS is important for improved disease surveillance and disease control and will serve as a basis for vaccine development against the disease.


Assuntos
Cardiomiopatias/veterinária , Doenças dos Peixes/virologia , Infecções por Vírus de RNA/veterinária , Totiviridae/isolamento & purificação , Animais , Cardiomiopatias/patologia , Cardiomiopatias/virologia , Análise por Conglomerados , Doenças dos Peixes/patologia , Coração/virologia , Histocitoquímica , Hibridização In Situ , Microscopia , Dados de Sequência Molecular , Miocárdio/patologia , Fases de Leitura Aberta , Filogenia , Infecções por Vírus de RNA/patologia , Infecções por Vírus de RNA/virologia , RNA de Cadeia Dupla/genética , RNA Viral/genética , DNA Polimerase Dirigida por RNA/genética , Salmo salar , Análise de Sequência de DNA , Totiviridae/patogenicidade , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...