Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Cell Mol Life Sci ; 81(1): 274, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902506

RESUMO

Discoveries in the field of genomics have revealed that non-coding genomic regions are not merely "junk DNA", but rather comprise critical elements involved in gene expression. These gene regulatory elements (GREs) include enhancers, insulators, silencers, and gene promoters. Notably, new evidence shows how mutations within these regions substantially influence gene expression programs, especially in the context of cancer. Advances in high-throughput sequencing technologies have accelerated the identification of somatic and germline single nucleotide mutations in non-coding genomic regions. This review provides an overview of somatic and germline non-coding single nucleotide alterations affecting transcription factor binding sites in GREs, specifically involved in cancer biology. It also summarizes the technologies available for exploring GREs and the challenges associated with studying and characterizing non-coding single nucleotide mutations. Understanding the role of GRE alterations in cancer is essential for improving diagnostic and prognostic capabilities in the precision medicine era, leading to enhanced patient-centered clinical outcomes.


Assuntos
Mutação , Neoplasias , Humanos , Neoplasias/genética , Sequências Reguladoras de Ácido Nucleico/genética , Genoma Humano , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação Neoplásica da Expressão Gênica
2.
Sci Rep ; 14(1): 12967, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839844

RESUMO

Osteoporosis is a common skeletal disease affecting millions of individuals world-wide, with an increased risk of fracture, and a decreased quality of life. Despite its well-known consequences, the etiology of osteoporosis and optimal treatment methods are not fully understood. Human genetic studies have identified genetic variants within the FMN2/GREM2 locus to be associated with trabecular volumetric bone mineral density (vBMD) and vertebral and forearm fractures, but not with cortical bone parameters. GREM2 is a bone morphogenetic protein (BMP) antagonist. In this study, we employed Grem2-deficient mice to investigate whether GREM2 serves as the plausible causal gene for the fracture signal at the FMN2/GREM2 locus. We observed that Grem2 is moderately expressed in bone tissue and particularly in osteoblasts. Complete Grem2 gene deletion impacted mouse survival and body growth. Partial Grem2 inactivation in Grem2+/- female mice led to increased trabecular BMD of femur and increased trabecular bone mass in tibia due to increased trabecular thickness, with an unchanged cortical thickness, as compared with wildtype littermates. Furthermore, Grem2 inactivation stimulated osteoblast differentiation, as evidenced by higher alkaline phosphatase (Alp), osteocalcin (Bglap), and osterix (Sp7) mRNA expression after BMP-2 stimulation in calvarial osteoblasts and osteoblasts from the long bones of Grem2-/- mice compared to wildtype littermates. These findings suggest that GREM2 is a possible target for novel osteoporotic treatments, to increase trabecular bone mass and prevent osteoporotic fractures.


Assuntos
Densidade Óssea , Osso Esponjoso , Osteoblastos , Animais , Feminino , Camundongos , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 2/genética , Osso Esponjoso/metabolismo , Osso Esponjoso/patologia , Diferenciação Celular , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos Knockout , Osteoblastos/metabolismo , Osteogênese/genética , Osteoporose/genética , Osteoporose/patologia , Osteoporose/metabolismo
3.
J Biol Chem ; 300(6): 107308, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657862

RESUMO

A deleterious effect of elevated levels of vitamin A on bone health has been reported in clinical studies. Mechanistic studies in rodents have shown that numbers of periosteal osteoclasts are increased, while endocortical osteoclasts are simultaneously decreased by vitamin A treatment. The present study investigated the in vitro and in vivo effect of all-trans retinoic acid (ATRA), the active metabolite of vitamin A, on periosteal osteoclast progenitors. Mouse calvarial bone cells were cultured in media containing ATRA, with or without the osteoclastogenic cytokine receptor activator of nuclear factor kappa B-ligand (RANKL), on plastic dishes or bone discs. Whereas ATRA did not stimulate osteoclast formation alone, the compound robustly potentiated the formation of RANKL-induced bone resorbing osteoclasts. This effect was due to stimulation by ATRA (half-maximal stimulation ∼3 nM) on the numbers of macrophages/osteoclast progenitors in the bone cell cultures, as assessed by mRNA and protein expression of several macrophage and osteoclast progenitor cell markers, such as macrophage colony-stimulating factor receptor, receptor activator of nuclear factor kappa B, F4/80, and CD11b, as well as by flow cytometry (FACS) analysis of CD11b+/F480+/Gr1- cells. The stimulation of macrophage numbers in the periosteal cell cultures was not mediated by increased macrophage colony-stimulating factor or interleukin-34. In contrast, ATRA did not enhance macrophages in bone marrow cell cultures. Importantly, ATRA treatment upregulated the mRNA expression of several macrophage-related genes in the periosteum of tibia in adult mice. These observations demonstrate a novel mechanism by which vitamin A enhances osteoclast formation specifically on periosteal surfaces.


Assuntos
Macrófagos , Osteoclastos , Periósteo , Ligante RANK , Vitamina A , Animais , Camundongos , Osteoclastos/metabolismo , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/citologia , Periósteo/metabolismo , Periósteo/citologia , Ligante RANK/metabolismo , Vitamina A/farmacologia , Vitamina A/metabolismo , Células-Tronco/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/citologia , Células Cultivadas , Tretinoína/farmacologia , Osteogênese/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Masculino
4.
Acta Neuropathol Commun ; 12(1): 35, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414005

RESUMO

Immunotherapies with antibody-drug-conjugates (ADC) and CAR-T cells, targeted at tumor surface antigens (surfaceome), currently revolutionize clinical oncology. However, target identification warrants a better understanding of the surfaceome and how it is modulated by the tumor microenvironment. Here, we decode the surfaceome and endocytome and its remodeling by hypoxic stress in glioblastoma (GBM), the most common and aggressive brain tumor in adults. We employed a comprehensive approach for global and dynamic profiling of the surfaceome and endocytosed (endocytome) proteins and their regulation by hypoxia in patient-derived GBM cultures. We found a heterogeneous surface-endocytome profile and a divergent response to hypoxia across GBM cultures. We provide a quantitative ranking of more than 600 surface resident and endocytosed proteins, and their regulation by hypoxia, serving as a resource to the cancer research community. As proof-of-concept, the established target antigen CD44 was identified as a commonly and abundantly expressed surface protein with high endocytic activity. Among hypoxia induced proteins, we reveal CXADR, CD47, CD81, BSG, and FXYD6 as potential targets of the stressed GBM niche. We could validate these findings by immunofluorescence analyses in patient tumors and by increased expression in the hypoxic core of GBM spheroids. Selected candidates were finally confronted by treatment studies, showing their high capacity for internalization and ADC delivery. Importantly, we highlight the limited correlation between transcriptomics and proteomics, emphasizing the critical role of membrane protein enrichment strategies and quantitative mass spectrometry. Our findings provide a comprehensive understanding of the surface-endocytome and its remodeling by hypoxia in GBM as a resource for exploration of targets for immunotherapeutic approaches in GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Glioblastoma/patologia , Neoplasias Encefálicas/patologia , Hipóxia/metabolismo , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Proteínas de Membrana , Microambiente Tumoral
5.
Science ; 383(6690): eabn3263, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38422184

RESUMO

Vocal production learning ("vocal learning") is a convergently evolved trait in vertebrates. To identify brain genomic elements associated with mammalian vocal learning, we integrated genomic, anatomical, and neurophysiological data from the Egyptian fruit bat (Rousettus aegyptiacus) with analyses of the genomes of 215 placental mammals. First, we identified a set of proteins evolving more slowly in vocal learners. Then, we discovered a vocal motor cortical region in the Egyptian fruit bat, an emergent vocal learner, and leveraged that knowledge to identify active cis-regulatory elements in the motor cortex of vocal learners. Machine learning methods applied to motor cortex open chromatin revealed 50 enhancers robustly associated with vocal learning whose activity tended to be lower in vocal learners. Our research implicates convergent losses of motor cortex regulatory elements in mammalian vocal learning evolution.


Assuntos
Elementos Facilitadores Genéticos , Eutérios , Evolução Molecular , Regulação da Expressão Gênica , Córtex Motor , Neurônios Motores , Proteínas , Vocalização Animal , Animais , Quirópteros/genética , Quirópteros/fisiologia , Vocalização Animal/fisiologia , Córtex Motor/citologia , Córtex Motor/fisiologia , Cromatina/metabolismo , Neurônios Motores/fisiologia , Laringe/fisiologia , Epigênese Genética , Genoma , Proteínas/genética , Proteínas/metabolismo , Sequência de Aminoácidos , Eutérios/genética , Eutérios/fisiologia , Aprendizado de Máquina
6.
ACS Appl Bio Mater ; 6(9): 3790-3797, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37647213

RESUMO

There is an urgent need for simple and non-invasive identification of live neural stem/progenitor cells (NSPCs) in the developing and adult brain as well as in disease, such as in brain tumors, due to the potential clinical importance in prognosis, diagnosis, and treatment of diseases of the nervous system. Here, we report a luminescent conjugated oligothiophene (LCO), named p-HTMI, for non-invasive and non-amplified real-time detection of live human patient-derived glioblastoma (GBM) stem cell-like cells and NSPCs. While p-HTMI stained only a small fraction of other cell types investigated, the mere addition of p-HTMI to the cell culture resulted in efficient detection of NSPCs or GBM cells from rodents and humans within minutes. p-HTMI is functionalized with a methylated imidazole moiety resembling the side chain of histidine/histamine, and non-methylated analogues were not functional. Cell sorting experiments of human GBM cells demonstrated that p-HTMI labeled the same cell population as CD271, a proposed marker for stem cell-like cells and rapidly migrating cells in glioblastoma. Our results suggest that the LCO p-HTMI is a versatile tool for immediate and selective detection of neural and glioma stem and progenitor cells.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Células-Tronco Neurais , Adulto , Humanos , Glioblastoma/diagnóstico , Encéfalo , Neoplasias Encefálicas/diagnóstico , Adapaleno
7.
Proc Natl Acad Sci U S A ; 120(33): e2300984120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549291

RESUMO

Current knowledge of cancer genomics remains biased against noncoding mutations. To systematically search for regulatory noncoding mutations, we assessed mutations in conserved positions in the genome under the assumption that these are more likely to be functional than mutations in positions with low conservation. To this end, we use whole-genome sequencing data from the International Cancer Genome Consortium and combined it with evolutionary constraint inferred from 240 mammals, to identify genes enriched in noncoding constraint mutations (NCCMs), mutations likely to be regulatory in nature. We compare medulloblastoma (MB), which is malignant, to pilocytic astrocytoma (PA), a primarily benign tumor, and find highly different NCCM frequencies between the two, in agreement with the fact that malignant cancers tend to have more mutations. In PA, a high NCCM frequency only affects the BRAF locus, which is the most commonly mutated gene in PA. In contrast, in MB, >500 genes have high levels of NCCMs. Intriguingly, several loci with NCCMs in MB are associated with different ages of onset, such as the HOXB cluster in young MB patients. In adult patients, NCCMs occurred in, e.g., the WASF-2/AHDC1/FGR locus. One of these NCCMs led to increased expression of the SRC kinase FGR and augmented responsiveness of MB cells to dasatinib, a SRC kinase inhibitor. Our analysis thus points to different molecular pathways in different patient groups. These newly identified putative candidate driver mutations may aid in patient stratification in MB and could be valuable for future selection of personalized treatment options.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Adulto , Animais , Humanos , Meduloblastoma/patologia , Mutação , Genoma , Neoplasias Cerebelares/genética , Quinases da Família src/genética , Mamíferos/genética , Proteínas de Ligação a DNA/genética
8.
Endocrinology ; 164(8)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37403231

RESUMO

Progesterone serum levels have been identified as a potential predictor for treatment effect in men with advanced prostate cancer, which is an androgen-driven disease. Although progesterone is the most abundant sex steroid in orchiectomized (ORX) male mice, the origins of progesterone in males are unclear. To determine the origins of progesterone and androgens, we first determined the effect of ORX, adrenalectomy (ADX), or both (ORX + ADX) on progesterone levels in multiple male mouse tissues. As expected, intratissue androgen levels were mainly testicular derived. Interestingly, progesterone levels remained high after ORX and ORX + ADX with the highest levels in white adipose tissue and in the gastrointestinal tract. High progesterone levels were observed in mouse chow and exceptionally high progesterone levels were observed in food items such as dairy, eggs, and beef, all derived from female animals of reproductive age. To determine if orally ingested progesterone contributes to tissue levels of progesterone in males, we treated ORX + ADX and sham mice with isotope-labeled progesterone or vehicle by oral gavage. We observed a significant uptake of labeled progesterone in white adipose tissue and prostate, suggesting that dietary progesterone may contribute to tissue levels of progesterone. In conclusion, although adrenal-derived progesterone contributes to intratissue progesterone levels in males, nonadrenal progesterone sources also contribute. We propose that dietary progesterone is absorbed and contributes to intratissue progesterone levels in male mice. We speculate that food with high progesterone content could be a significant source of progesterone in males, possibly with consequences for men undergoing androgen deprivation therapy for prostate cancer.


Assuntos
Androgênios , Neoplasias da Próstata , Humanos , Bovinos , Camundongos , Masculino , Animais , Progesterona , Antagonistas de Androgênios , Adrenalectomia , Orquiectomia
9.
Endocrinology ; 164(8)2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37406213

RESUMO

Insulin-like growth factor-I (IGF-I) levels, which are reduced by age, and cortical bone dimensions are major determinants of fracture risk in elderly subjects. Inactivation of liver-derived circulating IGF-I results in reduced periosteal bone expansion in young and older mice. In mice with lifelong depletion of IGF-I in osteoblast lineage cells, the long bones display reduced cortical bone width. However, it has not previously been investigated whether inducible inactivation of IGF-I locally in bone in adult/old mice affects the bone phenotype. Adult tamoxifen-inducible inactivation of IGF-I using a CAGG-CreER mouse model (inducible IGF-IKO mice) substantially reduced IGF-I expression in bone (-55%) but not in liver. Serum IGF-I and body weight were unchanged. We used this inducible mouse model to assess the effect of local IGF-I on the skeleton in adult male mice, avoiding confounding developmental effects. After tamoxifen-induced inactivation of the IGF-I gene at 9 months of age, the skeletal phenotype was determined at 14 months of age. Computed tomography analyses of tibia revealed that the mid-diaphyseal cortical periosteal and endosteal circumferences and calculated bone strength parameters were decreased in inducible IGF-IKO mice compared with controls. Furthermore, 3-point bending showed reduced tibia cortical bone stiffness in inducible IGF-IKO mice. In contrast, the tibia and vertebral trabecular bone volume fraction was unchanged. In conclusion, inactivation of IGF-I in cortical bone with unchanged liver-derived IGF-I in older male mice resulted in reduced radial growth of cortical bone. This suggests that not only circulating IGF-I but also locally derived IGF-I regulates the cortical bone phenotype in older mice.


Assuntos
Osso e Ossos , Fator de Crescimento Insulin-Like I , Humanos , Camundongos , Masculino , Animais , Idoso , Lactente , Fator de Crescimento Insulin-Like I/metabolismo , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/metabolismo , Desenvolvimento Ósseo/genética , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/metabolismo , Modelos Animais de Doenças , Tamoxifeno/farmacologia , Densidade Óssea/genética
10.
Sci Rep ; 13(1): 9046, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270592

RESUMO

Estradiol (E2) affects both reproductive and non-reproductive tissues, and the sensitivity to different doses of E2 varies between tissues. Membrane estrogen receptor α (mERα)-initiated signaling plays a tissue-specific role in mediating E2 effects, however, it is unclear if mERα signaling modulates E2 sensitivity. To determine this, we treated ovariectomized C451A females, lacking mERα signaling, and wildtype (WT) littermates with physiological (0.05 µg/mouse/day (low); 0.6 µg/mouse/day (medium)) or supraphysiological (6 µg/mouse/day (high)) doses of E2 (17ß-estradiol-3-benzoate) for three weeks. Low-dose treatment increased uterus weight in WT, but not C451A mice, while non-reproductive tissues (gonadal fat, thymus, trabecular and cortical bone) were unaffected in both genotypes. Medium-dose treatment increased uterus weight and bone mass and decreased thymus and gonadal fat weights in WT mice. Uterus weight was also increased in C451A mice, but the response was significantly attenuated (- 85%) compared to WT mice, and no effects were triggered in non-reproductive tissues. High-dose treatment effects in thymus and trabecular bone were significantly blunted (- 34% and - 64%, respectively) in C451A compared to WT mice, and responses in cortical bone and gonadal fat were similar between genotypes. Interestingly, the high dose effect in uterus was enhanced (+ 26%) in C451A compared to WT mice. In conclusion, loss of mERα signaling reduces the sensitivity to physiological E2 treatment in both non-reproductive tissues and uterus. Furthermore, the E2 effect after high-dose treatment in uterus is enhanced in the absence of mERα, suggesting a protective effect of mERα signaling in this tissue against supraphysiological E2 levels.


Assuntos
Estradiol , Receptor alfa de Estrogênio , Feminino , Camundongos , Animais , Humanos , Receptor alfa de Estrogênio/genética , Estradiol/farmacologia , Osso e Ossos , Transdução de Sinais , Densidade Óssea , Útero , Ovariectomia
11.
Science ; 380(6643): eabn2937, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37104612

RESUMO

Thousands of genomic regions have been associated with heritable human diseases, but attempts to elucidate biological mechanisms are impeded by an inability to discern which genomic positions are functionally important. Evolutionary constraint is a powerful predictor of function, agnostic to cell type or disease mechanism. Single-base phyloP scores from 240 mammals identified 3.3% of the human genome as significantly constrained and likely functional. We compared phyloP scores to genome annotation, association studies, copy-number variation, clinical genetics findings, and cancer data. Constrained positions are enriched for variants that explain common disease heritability more than other functional annotations. Our results improve variant annotation but also highlight that the regulatory landscape of the human genome still needs to be further explored and linked to disease.


Assuntos
Doença , Variação Genética , Animais , Humanos , Evolução Biológica , Genoma Humano , Estudo de Associação Genômica Ampla , Genômica , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Doença/genética
12.
EBioMedicine ; 91: 104546, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37023531

RESUMO

BACKGROUND: Global sclerostin inhibition reduces fracture risk efficiently but has been associated with cardiovascular side effects. The strongest genetic signal for circulating sclerostin is in the B4GALNT3 gene region, but the causal gene is unknown. B4GALNT3 expresses the enzyme beta-1,4-N-acetylgalactosaminyltransferase 3 that transfers N-acetylgalactosamine onto N-acetylglucosaminebeta-benzyl on protein epitopes (LDN-glycosylation). METHODS: To determine if B4GALNT3 is the causal gene, B4galnt3-/- mice were developed and serum levels of total sclerostin and LDN-glycosylated sclerostin were analysed and mechanistic studies were performed in osteoblast-like cells. Mendelian randomization was used to determine causal associations. FINDINGS: B4galnt3-/- mice had higher circulating sclerostin levels, establishing B4GALNT3 as a causal gene for circulating sclerostin levels, and lower bone mass. However, serum levels of LDN-glycosylated sclerostin were lower in B4galnt3-/- mice. B4galnt3 and Sost were co-expressed in osteoblast-lineage cells. Overexpression of B4GALNT3 increased while silencing of B4GALNT3 decreased the levels of LDN-glycosylated sclerostin in osteoblast-like cells. Mendelian randomization demonstrated that higher circulating sclerostin levels, genetically predicted by variants in the B4GALNT3 gene, were causally associated with lower BMD and higher risk of fractures but not with higher risk of myocardial infarction or stroke. Glucocorticoid treatment reduced B4galnt3 expression in bone and increased circulating sclerostin levels and this may contribute to the observed glucocorticoid-induced bone loss. INTERPRETATION: B4GALNT3 is a key factor for bone physiology via regulation of LDN-glycosylation of sclerostin. We propose that B4GALNT3-mediated LDN-glycosylation of sclerostin may be a bone-specific osteoporosis target, separating the anti-fracture effect of global sclerostin inhibition, from indicated cardiovascular side effects. FUNDING: Found in acknowledgements.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Densidade Óssea , N-Acetilgalactosaminiltransferases , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Osso e Ossos , Densidade Óssea/genética , Glucocorticoides/farmacologia , Glicosilação , Humanos
13.
bioRxiv ; 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36945512

RESUMO

Although thousands of genomic regions have been associated with heritable human diseases, attempts to elucidate biological mechanisms are impeded by a general inability to discern which genomic positions are functionally important. Evolutionary constraint is a powerful predictor of function that is agnostic to cell type or disease mechanism. Here, single base phyloP scores from the whole genome alignment of 240 placental mammals identified 3.5% of the human genome as significantly constrained, and likely functional. We compared these scores to large-scale genome annotation, genome-wide association studies (GWAS), copy number variation, clinical genetics findings, and cancer data sets. Evolutionarily constrained positions are enriched for variants explaining common disease heritability (more than any other functional annotation). Our results improve variant annotation but also highlight that the regulatory landscape of the human genome still needs to be further explored and linked to disease.

14.
PLoS One ; 17(11): e0277495, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36367882

RESUMO

Osteoarthritis (OA) is a common disorder and a major cause of disability in the elderly population. WNT16 has been suggested to play important roles in joint formation, bone homeostasis and OA development, but the mechanism of action is not clear. Transgenic mice lacking Wnt16 expression (Wnt16-/-) have a more severe experimental OA than control mice. In addition, Wnt16-/- mice have a reduced cortical thickness and develop spontaneous fractures. Herein, we have used Cre-Wnt16flox/flox mice in which Wnt16 can be conditionally ablated at any age through tamoxifen-inducible Cre-mediated recombination. Wnt16 deletion was induced in 7-week-old mice to study if the Cre-Wnt16flox/flox mice have a more severe OA phenotype after destabilizing the medial meniscus (DMM surgery) than littermate controls with normal Wnt16 expression (Wnt16flox/flox). WNT16 deletion was confirmed in articular cartilage and cortical bone in Cre-Wnt16flox/flox mice, shown by immunohistochemistry and reduced cortical bone area compared to Wnt16flox/flox mice. After DMM surgery, there was no difference in OA severity in the articular cartilage in the knee joint between the Cre-Wnt16flox/flox and Wnt16flox/flox mice in neither female nor male mice. In addition, there was no difference in osteophyte size in the DMM-operated tibia between the genotypes. In conclusion, inactivation of Wnt16 in adult mice do not result in a more severe OA phenotype after DMM surgery. Thus, presence of WNT16 in adult mice does not have an impact on experimental OA development. Taken together, our results from Cre-Wnt16flox/flox mice and previous results from Wnt16-/- mice suggest that WNT16 is crucial during synovial joint establishment leading to limited joint degradation also later in life, after onset of OA. This may be important when developing new therapeutics for OA treatment.


Assuntos
Cartilagem Articular , Osteoartrite , Osteófito , Idoso , Camundongos , Masculino , Feminino , Humanos , Animais , Osteoartrite/genética , Osteoartrite/metabolismo , Cartilagem Articular/metabolismo , Meniscos Tibiais/cirurgia , Meniscos Tibiais/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Proteínas Wnt/metabolismo
15.
Nat Commun ; 13(1): 4528, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953476

RESUMO

Pten is one of the most frequently mutated tumour suppressor gene in cancer. PTEN is generally altered in invasive cancers such as glioblastomas, but its function in collective cell migration and invasion is not fully characterised. Herein, we report that the loss of PTEN increases cell speed during collective migration of non-tumourous cells both in vitro and in vivo. We further show that loss of PTEN promotes LKB1-dependent phosphorylation and activation of the major metabolic regulator AMPK. In turn AMPK increases VASP phosphorylation, reduces VASP localisation at cell-cell junctions and decreases the interjunctional transverse actin arcs at the leading front, provoking a weakening of cell-cell contacts and increasing migration speed. Targeting AMPK activity not only slows down PTEN-depleted cells, it also limits PTEN-null glioblastoma cell invasion, opening new opportunities to treat glioblastoma lethal invasiveness.


Assuntos
Proteínas Quinases Ativadas por AMP , Glioblastoma , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Invasividade Neoplásica , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação
16.
Nurse Educ Today ; 115: 105375, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35653918

RESUMO

BACKGROUND: Venous blood specimen collection is a common procedure within healthcare and both diagnoses as well as treatment evaluation, are often based on results from these analyses. However, studies among both students and staff have demonstrated suboptimal adherence to venous blood specimen collection practice guidelines which in turn might jeopardize patient safety. OBJECTIVES: This study aimed to describe final semester nursing students' experiences of deviations from venous blood specimen collection practice guidelines during clinical training. METHODS: This study adopted a qualitative design. Twentysix final (6th) semester nursing students were recruited through purposive sampling at a Swedish university. Data were collected through semi-structured, face-to-face, focus group interviews in September 2015. The transcribed interviews were analyzed using qualitative content analysis. RESULTS: The students' experiences generated two categories; 1) Striving to blend in (subcategories Feeling uncomfortable and Adapting to the prevailing practice culture) and 2) Diminished confidence (subcategories Being confused due to inconsistency and Being uncertain about guideline usefulness) forming the overall theme Being a copycat. CONCLUSION: The research concludes that nursing students adapt to the prevailing practice culture encountered during clinical training, often at the expense of guidelines adherence. Since the students are being assessed during clinical training, the eagerness to belong to the team and be well-liked might be stronger than the ambition to follow guidelines. As a consequence, nursing students in clinical training might become copycats by aligning themselves with the prevailing practice culture which in turn might jeopardize adherence with VBSC guideline practice and thereby patient safety. With the ambition to support nursing students' learning in clinical training, facilitators of learning to comprise both students and supervisors need to be further addressed. TWEETABLE ABSTRACT: Nursing students adapt to the prevailing venous blood sample collection practice culture and become copycats.


Assuntos
Bacharelado em Enfermagem , Estudantes de Enfermagem , Coleta de Amostras Sanguíneas , Bacharelado em Enfermagem/métodos , Fidelidade a Diretrizes , Humanos , Aprendizagem , Pesquisa Qualitativa
17.
J Endocrinol ; 253(2): 75-84, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35256537

RESUMO

Selective estrogen receptor modulators (SERMs) act as estrogen receptor (ER) agonists or antagonists in a tissue-specific manner. ERs exert effects via nuclear actions but can also utilize membrane-initiated signaling pathways. To determine if membrane-initiated ERα (mERα) signaling affects SERM action in a tissue-specific manner, C451A mice, lacking mERα signaling due to a mutation at palmitoylation site C451, were treated with Lasofoxifene (Las), Bazedoxifene (Bza), or estradiol (E2), and various tissues were evaluated. Las and Bza treatment increased uterine weight to a similar extent in C451A and control mice, demonstrating mERα-independent uterine SERM effects, while the E2 effect on the uterus was predominantly mERα-dependent. Las and Bza treatment increased both trabecular and cortical bone mass in controls to a similar degree as E2, while both SERM and E2 treatment effects were absent in C451A mice. This demonstrates that SERM effects, similar to E2 effects, in the skeleton are mERα-dependent. Both Las and E2 treatment decreased thymus weight in controls, while neither treatment affected the thymus in C451A mice, demonstrating mERα-dependent SERM and E2 effects in this tissue. Interestingly, both SERM and E2 treatments decreased the total body fat percent in C451A mice, demonstrating the ability of these treatments to affect fat tissue in the absence of functional mERα signaling. In conclusion, mERα signaling can modulate SERM responses in a tissue-specific manner. This novel knowledge increases the understanding of the mechanisms behind SERM effects and may thereby facilitate the development of new improved SERMs.


Assuntos
Receptor alfa de Estrogênio , Moduladores Seletivos de Receptor Estrogênico , Animais , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Feminino , Camundongos , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Transdução de Sinais
18.
Am J Physiol Endocrinol Metab ; 322(4): E344-E354, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35156423

RESUMO

The gut microbiome has the capacity to regulate bone mass. The aim of this study was to develop a nutritional synbiotic dietary assemblage at an optimal dose to maintain bone mass in ovariectomized (Ovx) mice. We performed genomic analyses and in vitro experiments in a large collection of bacterial and fungal strains (>4,000) derived from fresh fruit and vegetables to identify candidates with the synergistic capacity to produce bone-protective short-chain fatty acids (SCFA) and vitamin K2. The candidate SBD111-A, composed of Lactiplantibacillus plantarum, Levilactobacillus brevis, Leuconostoc mesenteroides, Pseudomonas fluorescens, and Pichia kudriavzevii together with prebiotic dietary fibers, produced high levels of SCFA in vitro and protected against Ovx-induced trabecular bone loss in a dose-dependent manner in mice. Metagenomic sequencing revealed that SBD111-A changed the taxonomic composition and enriched specific pathways for synthesis of bone-protective SCFA, vitamin K2, and branched-chain amino acids in the gut microbiome.NEW & NOTEWORTHY We performed genomic analyses and in vitro experiments in a collection of bacterial and fungal strains. We identified a combination (SBD111-A) that produced high levels of SCFA in vitro and protected against ovariectomy-induced bone loss in a dose-dependent manner in mice. Metagenomic sequencing revealed that SBD111-A changed the taxonomic composition and function of the gut microbiome and enriched pathways for synthesis of bone-protective SCFA, vitamin K2, and branched-chain amino acids.


Assuntos
Osso Esponjoso , Simbióticos , Aminoácidos de Cadeia Ramificada , Animais , Bactérias , Ácidos Graxos Voláteis , Feminino , Humanos , Camundongos , Ovariectomia , Vitamina K 2
19.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217608

RESUMO

Therapeutic strategies directed at the tumor surfaceome (TS), including checkpoint inhibitor blocking antibodies, antibody drug conjugates (ADCs), and chimeric antigen receptor T (CAR-T) cells, provide a new armament to fight cancer. However, a remaining bottleneck is the lack of strategies to comprehensively interrogate patient tumors for potential TS targets. Here, we have developed a platform (tumor surfaceome mapping [TS-MAP]) integrated with a newly curated TS classifier (SURFME) that allows profiling of primary 3D cultures and intact patient glioma tumors with preserved tissue architecture. Moreover, TS-MAP specifically identifies proteins capable of endocytosis as tractable targets for ADCs and other modalities requiring toxic payload internalization. In high-grade gliomas that remain among the most aggressive forms of cancer, we show that cellular spatial organization (2D vs. 3D) fundamentally transforms the surfaceome and endocytome (e.g., integrins, proteoglycans, semaphorins, and cancer stem cell markers) with general implications for target screening approaches, as exemplified by an ADC targeting EGFR. The TS-MAP platform was further applied to profile the surfaceome and endocytome landscape in a cohort of freshly resected gliomas. We found a highly diverse TS repertoire between patient tumors, not directly associated with grade and histology, which highlights the need for individualized approaches. Our data provide additional layers of understanding fundamental to the future development of immunotherapy strategies, as well as procedures for proteomics-based target identification and selection. The TS-MAP platform should be widely applicable in efforts aiming at a better understanding of how to harness the TS for personalized immunotherapy.


Assuntos
Neoplasias Encefálicas/patologia , Endocitose , Glioma/patologia , Linhagem Celular Tumoral , Humanos , Proteínas de Neoplasias/metabolismo , Proteômica/métodos
20.
Am J Physiol Endocrinol Metab ; 322(3): E211-E218, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35068191

RESUMO

Osteoporosis is an age-dependent serious skeletal disease that leads to great suffering for the patient and high social costs, especially as the global population reaches higher age. Decreasing estrogen levels after menopause result in a substantial bone loss and increased fracture risk, whereas estrogen treatment improves bone mass in women. RSPO3, a secreted protein that modulates WNT signaling, increases trabecular bone mass and strength in the vertebrae of mice, and is associated with trabecular density and risk of distal forearm fractures in humans. The aim of the present study was to determine if RSPO3 is involved in the bone-sparing effect of estrogens. We first observed that estradiol (E2) treatment increases RSPO3 expression in bone of ovariectomized (OVX) mice, supporting a possible role of RSPO3 in the bone-sparing effect of estrogens. As RSPO3 is mainly expressed by osteoblasts in the bone, we used a mouse model devoid of osteoblast-derived RSPO3 (Runx2-creRspo3flox/flox mice) to determine if RSPO3 is required for the bone-sparing effect of E2 in OVX mice. We confirmed that osteoblast-specific RSPO3 inactivation results in a substantial reduction in trabecular bone mass and strength in the vertebrae. However, E2 increased vertebral trabecular bone mass and strength similarly in mice devoid of osteoblast-derived RSPO3 and control mice. Unexpectedly, osteoblast-derived RSPO3 was needed for the full estrogenic response on cortical bone thickness. In conclusion, although osteoblast-derived RSPO3 is a crucial regulator of vertebral trabecular bone, it is required for a full estrogenic effect on cortical, but not trabecular, bone in OVX mice. Thus, estradiol and RSPO3 regulate vertebral trabecular bone mass independent of each other.NEW & NOTEWORTHY Osteoblast-derived RSPO3 is known to be a crucial regulator of vertebral trabecular bone. Our new findings show that RSPO3 and estrogen regulate trabecular bone independent of each other, but that RSPO3 is necessary for a complete estrogenic effect on cortical bone.


Assuntos
Fraturas Ósseas , Osteoporose , Animais , Densidade Óssea , Osso Esponjoso/metabolismo , Estradiol/farmacologia , Estrogênios/farmacologia , Feminino , Humanos , Camundongos , Osteoporose/genética , Osteoporose/metabolismo , Ovariectomia , Trombospondinas/genética , Trombospondinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA