Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
PLoS One ; 9(7): e101365, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24988307

RESUMO

Mitochondrial morphology and function are coupled in healthy cells, during pathological conditions and (adaptation to) endogenous and exogenous stress. In this sense mitochondrial shape can range from small globular compartments to complex filamentous networks, even within the same cell. Understanding how mitochondrial morphological changes (i.e. "mitochondrial dynamics") are linked to cellular (patho) physiology is currently the subject of intense study and requires detailed quantitative information. During the last decade, various computational approaches have been developed for automated 2-dimensional (2D) analysis of mitochondrial morphology and number in microscopy images. Although these strategies are well suited for analysis of adhering cells with a flat morphology they are not applicable for thicker cells, which require a three-dimensional (3D) image acquisition and analysis procedure. Here we developed and validated an automated image analysis algorithm allowing simultaneous 3D quantification of mitochondrial morphology and network properties in human endothelial cells (HUVECs). Cells expressing a mitochondria-targeted green fluorescence protein (mitoGFP) were visualized by 3D confocal microscopy and mitochondrial morphology was quantified using both the established 2D method and the new 3D strategy. We demonstrate that both analyses can be used to characterize and discriminate between various mitochondrial morphologies and network properties. However, the results from 2D and 3D analysis were not equivalent when filamentous mitochondria in normal HUVECs were compared with circular/spherical mitochondria in metabolically stressed HUVECs treated with rotenone (ROT). 2D quantification suggested that metabolic stress induced mitochondrial fragmentation and loss of biomass. In contrast, 3D analysis revealed that the mitochondrial network structure was dissolved without affecting the amount and size of the organelles. Thus, our results demonstrate that 3D imaging and quantification are crucial for proper understanding of mitochondrial shape and topology in non-flat cells. In summary, we here present an integrative method for unbiased 3D quantification of mitochondrial shape and network properties in mammalian cells.


Assuntos
Imageamento Tridimensional/métodos , Microscopia Confocal/métodos , Mitocôndrias/ultraestrutura , Algoritmos , Análise de Fourier , Proteínas de Fluorescência Verde/análise , Células Endoteliais da Veia Umbilical Humana , Humanos , Software
2.
Curr Pharm Des ; 20(35): 5634-52, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24606803

RESUMO

Mitochondria play a key role in signal transduction, redox homeostasis and cell survival, which extends far beyond their classical functioning in ATP production and energy metabolism. In living cells, mitochondrial content ("mitochondrial mass") depends on the cell-controlled balance between mitochondrial biogenesis and degradation. These processes are intricately linked to changes in net mitochondrial morphology and spatiotemporal positioning ("mitochondrial dynamics"), which are governed by mitochondrial fusion, fission and motility. It is becoming increasingly clear that mitochondrial mass and dynamics, as well as its ultrastructure and volume, are mechanistically linked to mitochondrial function and the cell. This means that proper quantification of mitochondrial morphology and content is of prime importance in understanding mitochondrial and cellular physiology in health and disease. This review first presents how cellular mitochondrial content is regulated at the level of mitochondrial biogenesis, degradation and dynamics. Next we discuss how mitochondrial dynamics and content can be analyzed with a special emphasis on quantitative live-cell microscopy strategies.


Assuntos
Forma Celular/fisiologia , Metabolismo Energético/fisiologia , Mitocôndrias/fisiologia , Mitocôndrias/ultraestrutura , Animais , Morte Celular/fisiologia , Sobrevivência Celular/fisiologia , Humanos
3.
Biochem Biophys Res Commun ; 430(2): 573-8, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23228666

RESUMO

The hypolipidemic effect of peroxisome proliferator-activated receptor (PPAR) activators has been explained by increasing mitochondrial fatty acid oxidation, as observed in livers of rats treated with the pan-PPAR activator tetradecylthioacetic acid (TTA). PPAR-activation does, however, not fully explain the metabolic adaptations observed in hepatocytes after treatment with TTA. We therefore characterized the mitochondrial effects, and linked this to signalling by the metabolic sensor, the mammalian target of rapamycin (mTOR). In hepatocytes isolated from TTA-treated rats, the changes in cellular content and morphology were consistent with hypertrophy. This was associated with induction of multiple mitochondrial biomarkers, including mitochondrial DNA, citrate synthase and mRNAs of mitochondrial proteins. Transcription analysis further confirmed activation of PPARα-associated genes, in addition to genes related to mitochondrial biogenesis and function. Analysis of mitochondrial respiration revealed that the capacity of both electron transport and oxidative phosphorylation were increased. These effects coincided with activation of the stress related factor, ERK1/2, and mTOR. The protein level and phosphorylation of the downstream mTOR actors eIF4G and 4E-BP1 were induced. In summary, TTA increases mitochondrial respiration by inducing hypertrophy and mitochondrial biogenesis in rat hepatocytes, via adaptive regulation of PPARs as well as mTOR.


Assuntos
Hepatócitos/efeitos dos fármacos , Hipolipemiantes/farmacologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Renovação Mitocondrial/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Sulfetos/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Crescimento Celular , Células Cultivadas , Hepatócitos/enzimologia , Hepatócitos/ultraestrutura , Masculino , Mitocôndrias Hepáticas/enzimologia , Oxirredução , Fosforilação Oxidativa/efeitos dos fármacos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...