Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 49: 109306, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37360671

RESUMO

Artificial Intelligence (AI) has been evident in the agricultural sector recently. The objective of AI in agriculture is to control crop pests/diseases, reduce cost, and improve crop yield. In developing countries, the agriculture sector faces numerous challenges in the form of knowledge gap between farmers and technology, disease and pest infestation, lack of storage facilities, among others. In order to resolve some of these challenges, this paper presents crop pests/disease datasets sourced from local farms in Ghana. The dataset is presented in two folds; the raw images which consists of 24,881 images (6,549-Cashew, 7,508-Cassava, 5,389-Maize, and 5,435-Tomato) and augmented images which is further split into train and test sets. The latter consists of 102,976 images (25,811-Cashew, 26,330-Cassava, 23,657-Maize, and 27,178-Tomato), categorized into 22 classes. All images are de-identified, validated by expert plant virologists, and freely available for use by the research community.

2.
Comput Intell Neurosci ; 2022: 4984490, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36210972

RESUMO

Capsule Networks have shown great promise in image recognition due to their ability to recognize the pose, texture, and deformation of objects and object parts. However, the majority of the existing capsule networks are deterministic with limited ability to express uncertainty. Many of them tend to be overconfident on out-of-distribution data, making them less trustworthy and hence reducing their suitability for practical adoption in safety-critical areas such as health and self-driving cars. In this work, we propose a capsule network based on a variational mixture of Gaussians to train distributions of network weights as opposed to a single set of weights and enable the model to express its predictive uncertainty on out-of-distribution data. Training distributions of weights have the added advantage of avoiding overfitting on smaller datasets which are common in health and other fields. Although Bayesian neural networks are known to exhibit slow training and convergence, experimental results show that the proposed model can retrieve only relevant features, converge faster, is less computationally complex, can effectively express its predictive uncertainties, and achieve performance values that are comparable to the state-of-the-art models. This is an indication that CapsNets can exhibit the transparency, credibility, reliability, and interpretability required for practical adoption.


Assuntos
Redes Neurais de Computação , Teorema de Bayes , Distribuição Normal , Reprodutibilidade dos Testes , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...