Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1843(12): 2900-12, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25173815

RESUMO

Mammalian cellular repressor of E1A-stimulated genes is a lysosomal glycoprotein implicated in cellular growth and differentiation. The genome of the fruit fly Drosophila melanogaster encodes a putative orthologue (dCREG), suggesting evolutionarily conserved physiological functions of this protein. In D. melanogaster S2 cells, dCREG was found to localize in lysosomes. Further studies revealed that intracellular dCREG is subject of proteolytic maturation. Processing and turnover could be substantially reduced by RNAi-mediated silencing of cathepsin L. In contrast to mammalian cells, lysosomal delivery of dCREG does not depend on its carbohydrate moiety. Furthermore, depletion of the putative D. melanogaster lysosomal sorting receptor lysosomal enzyme receptor protein did not compromise cellular retention of dCREG. We also investigated the developmental consequences of dCREG ablation in whole D. melanogaster flies. Ubiquitous depletion of dCREG proved lethal at the late pupal stage once a knock-down efficiency of >95% was achieved. These results demonstrate that dCREG is essential for proper completion of fly development.

2.
Biochem J ; 451(1): 91-9, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23347038

RESUMO

The M6P (mannose 6-phosphate)/IGF2R (insulin-like growth factor II receptor) interacts with a variety of factors that impinge on tumour invasion and metastasis. It has been shown that expression of wild-type M6P/IGF2R reduces the tumorigenic and invasive properties of receptor-deficient SCC-VII squamous cell carcinoma cells. We have now used mutant forms of M6P/IGF2R to assess the relevance of the different ligand-binding sites of the receptor for its biological activities in this cellular system. The results of the present study demonstrate that M6P/IGF2R does not require a functional binding site for insulin-like growth factor II for inhibition of anchorage-independent growth and matrix invasion by SCC-VII cells. In contrast, the simultaneous mutation of both M6P-binding sites is sufficient to impair all cellular functions of the receptor tested. These findings highlight that the interaction between M6P/IGF2R and M6P-modified ligands is not only important for intracellular accumulation of lysosomal enzymes and formation of dense lysosomes, but is also crucial for the ability of the receptor to suppress SCC-VII growth and invasion. The present study also shows that some of the biological activities of M6P/IGF2R in SCC-VII cells strongly depend on a functional M6P-binding site within domain 3, thus providing further evidence for the non-redundant cellular functions of the individual carbohydrate-binding domains of the receptor.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Matriz Extracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Receptor IGF Tipo 2/metabolismo , Sítios de Ligação , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Matriz Extracelular/genética , Matriz Extracelular/patologia , Humanos , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Mutação , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Estrutura Terciária de Proteína , Receptor IGF Tipo 2/genética
3.
J Hepatol ; 57(2): 337-43, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22521359

RESUMO

BACKGROUND & AIMS: The mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R), a multifunctional protein, plays a central role in intracellular targeting of lysosomal enzymes and control of insulin-like growth factor II (IGF-II) bioactivity. Importantly, the gene encoding this receptor is frequently inactivated in a wide range of malignant tumors including hepatocellular carcinomas. Thus, M6P/IGF2R is considered a putative liver tumor suppressor. The aim of this study was to establish the impact of the receptor on the invasive properties of liver cells. METHODS: Reconstitution experiments were performed by expression of wild type and mutant M6P/IGF2R in receptor-deficient FRL14 fetal rat liver cells. RNA interference was used to induce M6P/IGF2R downregulation in receptor-positive MIM-1-4 mouse hepatocytes. RESULTS: We show that the M6P/IGF2R status exerts a strong impact on the invasiveness of tumorigenic rodent liver cells. M6P/IGF2R-deficient fetal rat liver cells hypersecrete lysosomal cathepsins and penetrate extracellular matrix barriers in a cathepsin-dependent manner. Forced expression of M6P/IGF2R restores intracellular transport of cathepsins to lysosomes and concomitantly reduces the tumorigenicity and invasive potential of these cells. Conversely, M6P/IGF2R knock-down in receptor-positive mouse hepatocytes causes increased cathepsin secretion as well as enhanced cell motility and invasiveness. We also demonstrate that functional M6P-binding sites are important for the anti-invasive properties of M6P/IGF2R, whereas the capacity to bind IGF-II is dispensable for the anti-invasive activity of the receptor in liver cells. CONCLUSIONS: M6P/IGF2R restricts liver cell invasion by preventing the pericellular action of M6P-modified proteins.


Assuntos
Hepatócitos/patologia , Neoplasias Hepáticas/patologia , Manosefosfatos/metabolismo , Receptor IGF Tipo 2/fisiologia , Animais , Linhagem Celular , Movimento Celular , Proliferação de Células , Humanos , Leucina/análogos & derivados , Leucina/farmacologia , Lisossomos/enzimologia , Camundongos , Invasividade Neoplásica , Ligação Proteica , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA