Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1311290, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419637

RESUMO

Numerous cyanobacteria capable of oxygenic photosynthesis possess multiple large plasmids exceeding 100 kbp in size. These plasmids are believed to have distinct replication and distribution mechanisms, as they coexist within cells without causing incompatibilities between plasmids. However, information on plasmid replication proteins (Rep) in cyanobacteria is limited. Synechocystis sp. PCC 6803 hosts four large plasmids, pSYSM, pSYSX, pSYSA, and pSYSG, but Rep proteins for these plasmids, except for CyRepA1 on pSYSA, are unknown. Using Autonomous Replication sequencing (AR-seq), we identified two potential Rep genes in Synechocystis 6803, slr6031 and slr6090, both located on pSYSX. The corresponding Rep candidates, Slr6031 and Slr6090, share structural similarities with Rep-associated proteins of other bacteria and homologs were also identified in various cyanobacteria. We observed autonomous replication activity for Slr6031 and Slr6090 in Synechococcus elongatus PCC 7942 by fusing their genes with a construct expressing GFP and introducing them via transformation. The slr6031/slr6090-containing plasmids exhibited lower copy numbers and instability in Synechococcus 7942 cells compared to the expression vector pYS. While recombination occurred in the case of slr6090, the engineered plasmid with slr6031 coexisted with plasmids encoding CyRepA1 or Slr6090 in Synechococcus 7942 cells, indicating the compatibility of Slr6031 and Slr6090 with CyRepA1. Based on these results, we designated Slr6031 and Slr6090 as CyRepX1 (Cyanobacterial Rep-related protein encoded on pSYSX) and CyRepX2, respectively, demonstrating that pSYSX is a plasmid with "two Reps in one plasmid." Furthermore, we determined the copy number and stability of plasmids with cyanobacterial Reps in Synechococcus 7942 and Synechocystis 6803 to elucidate their potential applications. The novel properties of CyRepX1 and 2, as revealed by this study, hold promise for the development of innovative genetic engineering tools in cyanobacteria.

2.
J Biosci Bioeng ; 137(4): 245-253, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38336581

RESUMO

In the practical scale of cyanobacterial cultivation, the golden algae Poterioochromonas malhamensis is a well-known predator that causes devastating damage to the culture, referred to as pond crash. The establishment and maintenance of monoculture conditions are ideal for large-scale cultures. However, this is a difficult challenge because microbial contamination is unavoidable in practical-scale culture facilities. In the present study, we unexpectedly observed the pond crash phenomenon during the pilot-scale cultivation of Synechococcus elongatus PCC 7942 using a 100-L photobioreactor. This was due to the contamination with P. malhamensis, which probably originated from residual fouling. Interestingly, we found that S.elongatus PCC 7942 can alter its morphological structure when subjected to continuous grazing pressure from predators, resulting in cells that were more than 100 times longer than those of the wild-type strain. These hyper-elongated S.elongatus PCC 7942 cells had mutations in the genes encoding FtsZ or Ftn2 which are involved in bacterial cell division. Importantly, the elongated phenotype remained stable during cultivation, enabling S.elongatus PCC 7942 to thrive and resist grazing. The cultivation of the elongated S.elongatus PCC 7942 mutant strain in a 100-L pilot-scale photobioreactor under non-sterile conditions resulted in increased cyanobacterial biomass without encountering pond crash. This study demonstrates an efficient strategy for cyanobacterial cell culture in practical-scale bioreactors without the need for extensive decontamination or sterilization of the growth medium and culture facility, which can contribute to economically viable cultivation and bioprocessing of microalgae.


Assuntos
Synechococcus , Synechococcus/genética , Engenharia Celular , Mutação
3.
J Gen Appl Microbiol ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38267064

RESUMO

Most cyanobacterial genomes possess more than two copies of genes encoding cyAbrBs (cyanobacterial AbrB-like proteins) having an AbrB-like DNA-binding domain at their C-terminal region. Accumulating data suggest that a wide variety of metabolic and physiologic processes are regulated by cyAbrBs. In this study, we investigated the function of the essential gene cyabrB1 (sll0359) in Synechocystis sp. PCC 6803 by using CRISPR interference technology. The conditional knockdown of cyabrB1 caused increases of cyAbrB2 transcript and protein levels. However, the effect of cyabrB1 knockdown on global gene expression profile was quite limited compared to the previously reported profound effect of knockout of cyabrB2. Among 24 up-regulated genes, 16 genes were members of the divergently transcribed icfG and sll1783 operons related to carbon metabolism. The results of this and previous studies indicate the different contributions of two cyAbrBs to transcriptional regulation of genes related to carbon, hydrogen and nitrogen metabolism. Possession of a pair of cyAbrBs has been highly conserved during the course of evolution of the cyanobacterial phylum, suggesting physiological significance of transcriptional regulation attained by their interaction.

4.
Front Microbiol ; 14: 1111979, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37032853

RESUMO

Owing to their photosynthetic capabilities, cyanobacteria are regarded as ecologically friendly hosts for production of biomaterials. However, compared to other bacteria, tools for genetic engineering, especially expression vector systems, are limited. In this study, we characterized a Rep protein, exhibiting replication activity in multiple cyanobacteria and established an expression vector using this protein. Our comprehensive screening using a genomic library of Synechocystis sp. PCC 6803 revealed that a certain region encoding a Rep-related protein (here named Cyanobacterial Rep protein A2: CyRepA2) exhibits high autonomous replication activity in a heterologous host cyanobacterium, Synechococcus elongatus PCC 7942. A reporter assay using GFP showed that the expression vector pYS carrying CyRepA2 can be maintained in not only S. 6803 and S. 7942, but also Synechococcus sp. PCC 7002 and Anabaena sp. PCC 7120. In S. 7942, GFP expression in the pYS-based system was tightly regulated by IPTG, achieving 10-fold higher levels than in the chromosome-based system. Furthermore, pYS could be used together with the conventional vector pEX, which was constructed from an endogenous plasmid in S. 7942. The combination of pYS with other vectors is useful for genetic engineering, such as modifying metabolic pathways, and is expected to improve the performance of cyanobacteria as bioproduction chassis.

5.
Front Microbiol ; 14: 1112307, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36876071

RESUMO

Synthetic biology approaches toward the development of cyanobacterial producer strains require the availability of appropriate sets of plasmid vectors. A factor for the industrial usefulness of such strains is their robustness against pathogens, such as bacteriophages infecting cyanobacteria. Therefore, it is of great interest to understand the native plasmid replication systems and the CRISPR-Cas based defense mechanisms already present in cyanobacteria. In the model cyanobacterium Synechocystis sp. PCC 6803, four large and three smaller plasmids exist. The ~100 kb plasmid pSYSA is specialized in defense functions by encoding all three CRISPR-Cas systems and several toxin-antitoxin systems. The expression of genes located on pSYSA depends on the plasmid copy number in the cell. The pSYSA copy number is positively correlated with the expression level of the endoribonuclease E. As molecular basis for this correlation we identified the RNase E-mediated cleavage within the pSYSA-encoded ssr7036 transcript. Together with a cis-encoded abundant antisense RNA (asRNA1), this mechanism resembles the control of ColE1-type plasmid replication by two overlapping RNAs, RNA I and II. In the ColE1 mechanism, two non-coding RNAs interact, supported by the small protein Rop, which is encoded separately. In contrast, in pSYSA the similar-sized protein Ssr7036 is encoded within one of the interacting RNAs and it is this mRNA that likely primes pSYSA replication. Essential for plasmid replication is furthermore the downstream encoded protein Slr7037 featuring primase and helicase domains. Deletion of slr7037 led to the integration of pSYSA into the chromosome or the other large plasmid pSYSX. Moreover, the presence of slr7037 was required for successful replication of a pSYSA-derived vector in another model cyanobacterium, Synechococcus elongatus PCC 7942. Therefore, we annotated the protein encoded by slr7037 as Cyanobacterial Rep protein A1 (CyRepA1). Our findings open new perspectives on the development of shuttle vectors for genetic engineering of cyanobacteria and of modulating the activity of the entire CRISPR-Cas apparatus in Synechocystis sp. PCC 6803.

6.
Plant Cell Physiol ; 63(2): 176-188, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34750635

RESUMO

The highly conserved Hik2-Rre1 two-component system is a multi-stress responsive signal-transducing module that controls the expression of hsp and other genes in cyanobacteria. Previously, we found in Synechococcus elongatus PCC 7942 that the heat-inducible phosphorylation of Rre1 was alleviated in a hik34 mutant, suggesting that Hik34 positively regulates signaling. In this study, we examined the growth of the hik34 deletion mutant in detail, and newly identified suppressor mutations located in rre1 or sasA gene negating the phenotype. Subsequent analyses indicated that heat-inducible Rre1 phosphorylation is dependent on Hik2 and that Hik34 modulates this Hik2-dependent response. In the following part of this study, we focused on the mechanism to control the Hik2 activity. Other recent studies reported that Hik2 activity is regulated by the redox status of plastoquinone (PQ) through the 3Fe-4S cluster attached to the cyclic GMP, adenylyl cyclase, FhlA (GAF) domain. Consistent with this, Rre1 phosphorylation occurred after the addition of 2,5-dibromo-6-isopropyl-3-methyl-1,4-benzoquinone but not after the addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea to the culture medium, which corresponded to PQ-reducing or -oxidizing conditions, respectively, suggesting that the Hik2-to-Rre1 phosphotransfer was activated under PQ-reducing conditions. However, there was no correlation between the measured PQ redox status and Rre1 phosphorylation during the temperature upshift. Therefore, changes in the PQ redox status are not the direct reason for the heat-inducible Rre1 phosphorylation, while some redox regulation is likely involved as oxidation events dependent on 2,6-dichloro-1,4-benzoquinone prevented heat-inducible Rre1 phosphorylation. On the basis of these results, we propose a model for the control of Hik2-dependent Rre1 phosphorylation.


Assuntos
Plastoquinona , Synechococcus , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Synechococcus/genética , Synechococcus/metabolismo , Temperatura
7.
J Gen Appl Microbiol ; 66(2): 85-92, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32281544

RESUMO

The CIRCE/HrcA system is highly conserved in cyanobacterial genomes. We have shown that heat-shock induction of the groESL1 operon in the cyanobacterium Synechocystis sp. PCC6803 is negatively regulated by the CIRCE/HrcA system. In Synechococcus elongatus PCC7942, a novel heat shock protein, Orf7.5, is involved in positive regulation of the groESL1 transcription. However, Orf7.5 is not conserved in some cyanobacteria, including Synechocystis sp. PCC6803. The purpose of this study is to evaluate the functional conservation of the CIRCE/HrcA system in S. elongatus PCC7942 and to understand the interplay between the CIRCE/HrcA system and the Orf7.5 regulatory system. We constructed single and double mutants of S. elongatus orf7.5, hrcA and orf7.5/hrcA and heat induction of the groESL1 transcription in these mutants was analyzed. Unexpectedly, derepression of the groESL1 transcription in an hrcA mutant was not observed. In all these mutants, the transcription was greatly suppressed under both normal and heat stress conditions, indicating that both HrcA and Orf7.5 are involved in regulation of the groESL1 transcription in a positive way. Consistent with the decrease in the groESL1 mRNA level, all the single and double mutants showed a great loss of acquired thermotolerance. Heat induction of the orf7.5 promoter activity was totally diminished in the orf7.5 mutant, indicating that Orf7.5 activates its own transcription. Yeast two hybrid analysis showed that the principle sigma factor RpoD1 interacts with Orf7.5. These results indicate that Orf7.5 enhances the transcription of groESL1 and orf7.5 by interacting with RpoD1.


Assuntos
Proteínas de Bactérias/metabolismo , Chaperoninas/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Repressoras/metabolismo , Synechococcus/genética , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Chaperoninas/genética , Proteínas de Ligação a DNA , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Mutação , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Fator sigma/genética , Synechococcus/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Técnicas do Sistema de Duplo-Híbrido
8.
Biosci Biotechnol Biochem ; 82(1): 161-165, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29297252

RESUMO

Owing to their photosynthetic capabilities, there is increasing interest in utilizing cyanobacteria to convert solar energy into biomass. 2-Deoxy-scyllo-inosose (DOI) is a valuable starting material for the benzene-free synthesis of catechol and other benzenoids. DOI synthase (DOIS) is responsible for the formation of DOI from d-glucose-6-phosphate (G6P) in the biosynthesis of 2-deoxystreptamine-containing aminoglycoside antibiotics such as neomycin and butirosin. DOI fermentation using a recombinant Escherichia coli strain has been reported, although a carbon source is necessary for high-yield DOI production. We constructed DOI-producing cyanobacteria toward carbon-free and sustainable DOI production. A DOIS gene derived from the butirosin producer strain Bacillus circulans (btrC) was introduced and expressed in the cyanobacterium Synechococcus elongatus PCC 7942. We ultimately succeeded in producing 400 mg/L of DOI in S. elongatus without using a carbon source. DOI production by cyanobacteria represents a novel and efficient approach for producing benzenoids from G6P synthesized by photosynthesis.


Assuntos
Inositol/análogos & derivados , Synechococcus/química , Benzaldeídos/química , Benzeno/química , Benzoquinonas/química , Sulfato de Butirosina/biossíntese , Catecóis/química , Inositol/biossíntese , Neomicina/biossíntese , Fotossíntese
9.
Biosci Biotechnol Biochem ; 76(8): 1484-91, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22878191

RESUMO

To understand the induction of the adaptive response under various stress conditions, it is important to determine the partnership between histidine kinase and response regulators in the bacterial two-component system (TCS). The genes encoding TCS partners are usually comprised of an operon in the genome, but many of them are orphans in the cyanobacterial genome. There is little information on their partnerships in Synechococcus elongatus PCC 7942. Our comprehensive analysis of protein-protein interactions among all 37 full-length proteins and the truncated domains of 24 orphans revealed a number of specific interactions. They involved evolutionarily well-conserved orphan proteins among cyanobacterial species such as Synpcc7942_0453/Ycf29, NblS/RpaB, NblS/SrrA, SasA/RpaA, and SasA/Synpcc7942_2466. Our investigation of the transphosphorylation of interaction partners indicates that orphan TCSs comprise a complex signaling network.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Proteínas Quinases/genética , Synechococcus/genética , Adaptação Fisiológica , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Escherichia coli/genética , Histidina Quinase , Óperon , Fosforilação , Mapeamento de Interação de Proteínas , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Transdução de Sinais , Estresse Fisiológico , Synechococcus/metabolismo , Técnicas do Sistema de Duplo-Híbrido
10.
Biosci Biotechnol Biochem ; 71(4): 1021-7, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17420601

RESUMO

The genome of the cyanobacterium Synechococcus elongatus PCC 7942 contains four dnaJ homologs, which are classified into three types based on domain structure. Among these, dnaJ1, dnaJ2, and dnaJ3 are essential for normal growth, and hence we analyzed them with a view to characterizing their specificity. Expression analysis indicated that dnaJ2, which encodes type II DnaJ protein, exhibited typical responses to heat and high-light stresses. Their localization and ability to prevent aggregation of luciferase were also diverse, suggesting a possible functional differentiation of these proteins. Since the expression of dnaJ1, which belongs to conserved type I DnaJ, down-regulated under heat stress, the unique structure of DnaJ2 may be involved in stress responses of S. elongatus. Based on phylogenetic analysis, the diverse dnaJ family was assumed to have evolved its own specific functions in each cyanobacterial species.


Assuntos
DNA de Algas/genética , Família Multigênica/genética , Synechococcus/genética , Proteínas de Algas/biossíntese , Proteínas de Algas/genética , Proteínas de Algas/isolamento & purificação , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Western Blotting , Primers do DNA , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Temperatura Alta , Filogenia , Plasmídeos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima
11.
J Bacteriol ; 189(10): 3751-8, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17351044

RESUMO

We analyzed the stress responses of three dnaK homologues (dnaK1, dnaK2, and dnaK3) in the cyanobacterium Synechococcus elongatus PCC 7942. A reporter assay showed that under stress conditions the expression of only the dnaK2 gene was induced, suggesting a functional assignment of these homologues. RNA blot hybridization indicated a typical stress response of dnaK2 to heat and high-light stress. Primer extension mapping showed that dnaK2 was transcribed from similar sites under various stress conditions. Although no known sequence motif was detected in the upstream region, a 20-bp sequence element was highly conserved in dnaK2; it was essential not only for the stress induction but also for the basal expression of dnaK2. The ubiquitous upstream localization of this element in each heat shock gene suggests its important role in the cyanobacterial stress response.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Resposta ao Choque Térmico/genética , Proteínas de Membrana/genética , Synechococcus/genética , Sequência de Bases , Sequência Conservada , Genes Reporter , Luz , Dados de Sequência Molecular , RNA Bacteriano/genética
12.
Biosci Biotechnol Biochem ; 71(1): 279-82, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17213638

RESUMO

Three dnaK and four dnaJ genes have been identified in the genome of cyanobacterium Synechococcus elongatus PCC 7942. Our comprehensive analysis of yeast two-hybrid screening revealed a specific interaction among DnaK2, DnaJ2, and RNase E, an essential endoribonuclease. We examined the effects of DnaK2 and DnaJ2 on RNase E activity by monitoring the digestion of psbAII transcript in vitro. The addition of DnaK2 and DnaJ2 obviously inhibited RNase E activity in an ATP-dependent manner. These results suggest that DnaK2 and DnaJ2 are involved in RNA degradation through interaction with RNase E.


Assuntos
Proteínas de Bactérias/metabolismo , Endorribonucleases/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Synechococcus/genética , Synechococcus/metabolismo , Transcrição Gênica/genética , Proteínas de Bactérias/genética , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP70/genética
13.
Biochem Biophys Res Commun ; 352(1): 36-41, 2007 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-17107658

RESUMO

In cyanobacterium Synechococcus elongatus PCC 7942, we observed that htpG-overexpression caused remarkable growth inhibition. In addition, subcellular fractionation experiments showed that HtpG was localized in the membrane fraction. To understand its function in cyanobacteria, we carried out yeast two-hybrid screening to identify specific proteins interacting with HtpG, and found out, HemE, uroporphyrinogen decarboxylase. When compared to the wild-type strain, the htpG-null mutant and -overexpressing strains exhibited higher and lower cytosolic HemE activity, based on the coproporphyrin production, respectively. These results strongly suggest that HtpG is involved in the regulation of tetrapyrrole biosynthesis through interacting with HemE protein.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Synechococcus/metabolismo , Tetrapirróis/biossíntese , Proteínas de Bactérias/genética , Proliferação de Células , Proteínas de Choque Térmico HSP90/genética , Mutação/genética , Ligação Proteica , Synechococcus/citologia , Synechococcus/genética , Uroporfirinogênio Descarboxilase/genética , Uroporfirinogênio Descarboxilase/metabolismo
14.
Biosci Biotechnol Biochem ; 70(7): 1592-8, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16861792

RESUMO

The Synechococcus sp. PCC7942 strain carrying a missense mutation in the peptide-binding domain of DnaK3, one of the essential dnaK gene products, revealed temperature-sensitive growth. We also isolated suppressor mutants of this strain. One of the suppressors was mapped in the ribosomal protein gene rpl24 (syc1876), which encodes the 50S ribosomal protein L24. Subcellular localization of three DnaK proteins was determined, and the results indicated that a quantity of DnaK3 was dislocated from membrane-bound polysomes when dnaK3 temperature-sensitive mutant was incubated at non-permissive temperatures. Furthermore, we examined the photosystem II reaction center protein D1 and detected a translational intermediate polypeptide in membrane-bound polysome fractions prepared from dnaK3 temperature-sensitive cells grown at high temperature. These characteristic features of DnaK3 localizations and detection of D1 protein intermediate were not observed in the suppressor mutant even at high temperatures.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Membrana/metabolismo , Biossíntese de Proteínas , Synechococcus/metabolismo , Tilacoides/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Dados de Sequência Molecular , Mutação , Complexo de Proteína do Fotossistema II/fisiologia , Polirribossomos/genética , Polirribossomos/fisiologia , Proteínas Ribossômicas/metabolismo , Synechococcus/genética , Tilacoides/genética
15.
Biosci Biotechnol Biochem ; 68(1): 20-7, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14745159

RESUMO

Peroxiredoxin (Prx) constitutes a large family of enzymes found in microorganisms, animals, and plants, but the detection of the activities of Prx-linked hydroperoxide reductases (peroxiredoxin reductases) in cell extracts, and the purification based on peroxide reductase activity, have only been done in bacteria and Trypanosomatidae. A peroxiredoxin reductase (NADH oxidase) from a bacterium, Amphibacillus, displayed only poor activities in the presence of purified Prx from Saccharomyces or Synechocystis, while it is highly active in the presence of bacterial Prx. These results suggested that an enzyme system different from that in bacteria might exist for the reduction of Prx in yeast and cyanobacteria. Prx-linked hydroperoxide reductase activities were detected in cell extracts of Saccharomyces, Synechocystis, and Chlorella, and the enzyme activities of Saccharomyces and Chlorella were induced under vigorously aerated culture conditions and intensive light exposure conditions, respectively. Partial purification of Prx-linked peroxidase from the induced yeast cells indicated that the Prx-linked peroxidase system consists of two protein components, namely, thioredoxin and thioredoxin reductase. This finding is consistent with the previous report on its purification based on its protein protection activity against oxidation [Chae et al., J. Biol. Chem., 269, 27670-27678 (1994)]. In this study we have confirmed that Prx-linked peroxidase activity are widely distributed, not only in bacteria species and Trypanosomatidae, but also in yeast and photosynthetic microorganisms, and showed reconstitution of the activity from partially purified interspecies components.


Assuntos
Chlamydomonas/enzimologia , Chlorella/enzimologia , Cianobactérias/enzimologia , Flavoproteínas/metabolismo , NADH NADPH Oxirredutases/metabolismo , Peroxidases/metabolismo , Saccharomyces/enzimologia , Animais , Bacillus/enzimologia , Extratos Celulares , Flavoproteínas/isolamento & purificação , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/isolamento & purificação , Peroxidases/isolamento & purificação , Peroxirredoxinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...