Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(20): 201401, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37267553

RESUMO

Among the four fundamental forces, only gravity does not couple to particle spins according to the general theory of relativity. We test this principle by searching for an anomalous scalar coupling between the neutron spin and the Earth's gravity on the ground. We develop an atomic gas comagnetometer to measure the ratio of nuclear spin-precession frequencies between ^{129}Xe and ^{131}Xe, and search for a change of this ratio to the precision of 10^{-9} as the sensor is flipped in Earth's gravitational field. The null results of this search set an upper limit on the coupling energy between the neutron spin and the gravity on the ground at 5.3×10^{-22} eV (95% confidence level), resulting in a 17-fold improvement over the previous limit. The results can also be used to constrain several other anomalous interactions. In particular, the limit on the coupling strength of axion-mediated monopole-dipole interactions at the range of Earth's radius is improved by a factor of 17.

2.
Phys Rev Lett ; 128(23): 231803, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35749169

RESUMO

Monopole-dipole interactions involving scalar couplings between a spin and a massive particle violate both P and T symmetry, and can be mediated by axions. We use a ^{129}Xe-^{131}Xe-Rb atomic cell comagnetometer to measure the ratio of precession frequencies between the two xenon isotopes, and search for changes of the ratio correlated with the distance between the atomic cell and a nonmagnetic bismuth germanate crystal. A modulated Rb polarization scheme is used to suppress systematic effects by 2 orders of magnitude. The null results of this search improve the upper limit on the coupling strength g_{s}^{N}g_{p}^{n} over the interaction range 0.11-0.55 mm, and by a maximum improvement factor of 30 at 0.24 mm. The corresponding propagator mass range of this new excluded region covers 0.36-1.80 meV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...