Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38747385

RESUMO

Global warming modulates soil respiration (RS) via microbial decomposition, which is seasonally dependent. Yet, the magnitude and direction of this modulation remain unclear, partly owing to the lack of knowledge on how microorganisms respond to seasonal changes. Here, we investigated the temporal dynamics of soil microbial communities over 12 consecutive months under experimental warming in a tallgrass prairie ecosystem. The interplay between warming and time altered (P < 0.05) the taxonomic and functional compositions of microbial communities. During the cool months (January to February and October to December), warming induced a soil microbiome with a higher genomic potential for carbon decomposition, community-level ribosomal RNA operon (rrn) copy numbers, and microbial metabolic quotients, suggesting that warming stimulated fast-growing microorganisms that enhanced carbon decomposition. Modeling analyses further showed that warming reduced the temperature sensitivity of microbial carbon use efficiency (CUE) by 28.7% when monthly average temperature was low, resulting in lower microbial CUE and higher heterotrophic respiration (Rh) potentials. Structural equation modeling showed that warming modulated both Rh and RS directly by altering soil temperature and indirectly by influencing microbial community traits, soil moisture, nitrate content, soil pH, and gross primary productivity. The modulation of Rh by warming was more pronounced in cooler months compared to warmer ones. Together, our findings reveal distinct warming-induced effects on microbial functional traits in cool months, challenging the norm of soil sampling only in the peak growing season, and advancing our mechanistic understanding of the seasonal pattern of RS and Rh sensitivity to warming.


Assuntos
Pradaria , Microbiota , Estações do Ano , Microbiologia do Solo , Solo , Solo/química , Aquecimento Global , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Carbono/metabolismo , Carbono/análise , Temperatura
2.
Water Res ; 255: 121460, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552495

RESUMO

Carbon amendments designed to remediate environmental contamination lead to substantial perturbations when injected into the subsurface. For the remediation of uranium contamination, carbon amendments promote reducing conditions to allow microorganisms to reduce uranium to an insoluble, less mobile state. However, the reproducibility of these amendments and underlying microbial community assembly mechanisms have rarely been investigated in the field. In this study, two injections of emulsified vegetable oil were performed in 2009 and 2017 to immobilize uranium in the groundwater at Oak Ridge, TN, USA. Our objectives were to determine whether and how the injections resulted in similar abiotic and biotic responses and their underlying community assembly mechanisms. Both injections caused similar geochemical and microbial succession. Uranium, nitrate, and sulfate concentrations in the groundwater dropped following the injection, and specific microbial taxa responded at roughly the same time points in both injections, including Geobacter, Desulfovibrio, and members of the phylum Comamonadaceae, all of which are well established in uranium, nitrate, and sulfate reduction. Both injections induced a transition from relatively stochastic to more deterministic assembly of microbial taxonomic and phylogenetic community structures based on 16S rRNA gene analysis. We conclude that geochemical and microbial successions after biostimulation are reproducible, likely owing to the selection of similar phylogenetic groups in response to EVO injection.

3.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365232

RESUMO

Ammonia-oxidizing archaea (AOA) are among the most ubiquitous and abundant archaea on Earth, widely distributed in marine, terrestrial, and geothermal ecosystems. However, the genomic diversity, biogeography, and evolutionary process of AOA populations in subsurface environments are vastly understudied compared to those in marine and soil systems. Here, we report a novel AOA order Candidatus (Ca.) Nitrosomirales which forms a sister lineage to the thermophilic Ca. Nitrosocaldales. Metagenomic and 16S rRNA gene-read mapping demonstrates the abundant presence of Nitrosomirales AOA in various groundwater environments and their widespread distribution across a range of geothermal, terrestrial, and marine habitats. Terrestrial Nitrosomirales AOA show the genetic capacity of using formate as a source of reductant and using nitrate as an alternative electron acceptor. Nitrosomirales AOA appear to have acquired key metabolic genes and operons from other mesophilic populations via horizontal gene transfer, including genes encoding urease, nitrite reductase, and V-type ATPase. The additional metabolic versatility conferred by acquired functions may have facilitated their radiation into a variety of subsurface, marine, and soil environments. We also provide evidence that each of the four AOA orders spans both marine and terrestrial habitats, which suggests a more complex evolutionary history for major AOA lineages than previously proposed. Together, these findings establish a robust phylogenomic framework of AOA and provide new insights into the ecology and adaptation of this globally abundant functional guild.


Assuntos
Amônia , Archaea , Amônia/metabolismo , Ecossistema , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Oxirredução , Filogenia , Solo , Microbiologia do Solo
4.
Nat Commun ; 15(1): 1178, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331994

RESUMO

Unravelling biosphere feedback mechanisms is crucial for predicting the impacts of global warming. Soil priming, an effect of fresh plant-derived carbon (C) on native soil organic carbon (SOC) decomposition, is a key feedback mechanism that could release large amounts of soil C into the atmosphere. However, the impacts of climate warming on soil priming remain elusive. Here, we show that experimental warming accelerates soil priming by 12.7% in a temperate grassland. Warming alters bacterial communities, with 38% of unique active phylotypes detected under warming. The functional genes essential for soil C decomposition are also stimulated, which could be linked to priming effects. We incorporate lab-derived information into an ecosystem model showing that model parameter uncertainty can be reduced by 32-37%. Model simulations from 2010 to 2016 indicate an increase in soil C decomposition under warming, with a 9.1% rise in priming-induced CO2 emissions. If our findings can be generalized to other ecosystems over an extended period of time, soil priming could play an important role in terrestrial C cycle feedbacks and climate change.


Assuntos
Ecossistema , Pradaria , Solo , Carbono , Mudança Climática
5.
Nat Microbiol ; 9(2): 490-501, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38212658

RESUMO

Community assembly describes how different ecological processes shape microbial community composition and structure. How environmental factors impact community assembly remains elusive. Here we sampled microbial communities and >200 biogeochemical variables in groundwater at the Oak Ridge Field Research Center, a former nuclear waste disposal site, and developed a theoretical framework to conceptualize the relationships between community assembly processes and environmental stresses. We found that stochastic assembly processes were critical (>60% on average) in shaping community structure, but their relative importance decreased as stress increased. Dispersal limitation and 'drift' related to random birth and death had negative correlations with stresses, whereas the selection processes leading to dissimilar communities increased with stresses, primarily related to pH, cobalt and molybdenum. Assembly mechanisms also varied greatly among different phylogenetic groups. Our findings highlight the importance of microbial dispersal limitation and environmental heterogeneity in ecosystem restoration and management.


Assuntos
Água Subterrânea , Microbiota , Filogenia , Processos Estocásticos
6.
mSystems ; 8(6): e0102523, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38038441

RESUMO

IMPORTANCE: Amplicon sequencing of targeted genes is the predominant approach to estimate the membership and structure of microbial communities. However, accurate reconstruction of community composition is difficult due to sequencing errors, and other methodological biases and effective approaches to overcome these challenges are essential. Using a mock community of 33 phylogenetically diverse strains, this study evaluated the effect of GC content on sequencing results and tested different approaches to improve overall sequencing accuracy while characterizing the pros and cons of popular amplicon sequence data processing approaches. The sequencing results from this study can serve as a benchmarking data set for future algorithmic improvements. Furthermore, the new insights on sequencing error, chimera formation, and GC bias from this study will help enhance the quality of amplicon sequencing studies and support the development of new data analysis approaches.


Assuntos
Código de Barras de DNA Taxonômico , Microbiota , Composição de Bases , Análise de Sequência de DNA/métodos , Viés
7.
ISME J ; 17(12): 2210-2220, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37833523

RESUMO

Soils harbor highly diverse microbial communities that are critical to soil health, but agriculture has caused extensive land use conversion resulting in negative effects on critical ecosystem processes. However, the responses and adaptations of microbial communities to land use conversion have not yet been understood. Here, we examined the effects of land conversion for long-term crop use on the network complexity and stability of soil microbial communities over 19 months. Despite reduced microbial biodiversity in comparison with native tallgrass prairie, conventionally tilled (CT) cropland significantly increased network complexity such as connectivity, connectance, average clustering coefficient, relative modularity, and the number of species acting at network hubs and connectors as well as resulted in greater temporal variation of complexity indices. Molecular ecological networks under CT cropland became significantly more robust and less vulnerable, overall increasing network stability. The relationship between network complexity and stability was also substantially strengthened due to land use conversion. Lastly, CT cropland decreased the number of relationships between network structure and environmental properties instead being strongly correlated to management disturbances. These results indicate that agricultural disturbance generally increases the complexity and stability of species "interactions", possibly as a trade-off for biodiversity loss to support ecosystem function when faced with frequent agricultural disturbance.


Assuntos
Microbiota , Solo , Solo/química , Ecossistema , Pradaria , Agricultura/métodos , Biodiversidade , Microbiologia do Solo
8.
mBio ; 14(2): e0353522, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36988509

RESUMO

Sulfate-reducing bacteria (SRB) are essential functional microbial taxa for degrading organic matter (OM) in anoxic marine environments. However, there are little experimental data regarding how SRB regulates microbial communities. Here, we applied a top-down microbial community management approach by inhibiting SRB to elucidate their contributions to the microbial community during OM degradation. Based on the highly replicated microcosms (n = 20) of five different incubation stages, we found that many microbial community properties were influenced after inhibiting SRB, including the composition, structure, network, and community assembly processes. We also found a strong coexistence pattern between SRB and other abundant phylogenetic lineages via positive frequency-dependent selection. The relative abundances of the families Synergistaceae, Peptostreptococcaceae, Dethiosulfatibacteraceae, Prolixibacteraceae, Marinilabiliaceae, and Marinifilaceae were simultaneously suppressed after inhibiting SRB during OM degradation. A close association between SRB and the order Marinilabiliales among coexisting taxa was most prominent. They contributed to preserved modules during network successions, were keystone nodes mediating the networked community, and contributed to homogeneous ecological selection. The molybdate tolerance test of the isolated strains of Marinilabiliales showed that inhibited SRB (not the inhibitor of SRB itself) triggered a decrease in the relative abundance of Marinilabiliales. We also found that inhibiting SRB resulted in reduced pH, which is unsuitable for the growth of most Marinilabiliales strains, while the addition of pH buffer (HEPES) in SRB-inhibited treatment microcosms restored the pH and the relative abundances of these bacteria. These data supported that SRB could modify niches to affect species coexistence. IMPORTANCE Our model offers insight into the ecological properties of SRB and identifies a previously undocumented dimension of OM degradation. This targeted inhibition approach could provide a novel framework for illustrating how functional microbial taxa associate the composition and structure of the microbial community, molecular ecological network, and community assembly processes. These findings emphasize the importance of SRB during OM degradation. Our results proved the feasibility of the proposed study framework, inhibiting functional taxa at the community level, for illustrating when and to what extent functional taxa can contribute to ecosystem services.


Assuntos
Bactérias , Microbiota , Humanos , Filogenia , Bacteroidetes/metabolismo , Sedimentos Geológicos/microbiologia , Sulfatos/metabolismo
9.
ISME J ; 17(6): 823-835, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36899058

RESUMO

Carbohydrate utilization is critical to microbial survival. The phosphotransferase system (PTS) is a well-documented microbial system with a prominent role in carbohydrate metabolism, which can transport carbohydrates through forming a phosphorylation cascade and regulate metabolism by protein phosphorylation or interactions in model strains. However, those PTS-mediated regulated mechanisms have been underexplored in non-model prokaryotes. Here, we performed massive genome mining for PTS components in nearly 15,000 prokaryotic genomes from 4,293 species and revealed a high prevalence of incomplete PTSs in prokaryotes with no association to microbial phylogeny. Among these incomplete PTS carriers, a group of lignocellulose degrading clostridia was identified to have lost PTS sugar transporters and carry a substitution of the conserved histidine residue in the core PTS component, HPr (histidine-phosphorylatable phosphocarrier). Ruminiclostridium cellulolyticum was then selected as a representative to interrogate the function of incomplete PTS components in carbohydrate metabolism. Inactivation of the HPr homolog reduced rather than increased carbohydrate utilization as previously indicated. In addition to regulating distinct transcriptional profiles, PTS associated CcpA (Catabolite Control Protein A) homologs diverged from previously described CcpA with varied metabolic relevance and distinct DNA binding motifs. Furthermore, the DNA binding of CcpA homologs is independent of HPr homolog, which is determined by structural changes at the interface of CcpA homologs, rather than in HPr homolog. These data concordantly support functional and structural diversification of PTS components in metabolic regulation and bring novel understanding of regulatory mechanisms of incomplete PTSs in cellulose-degrading clostridia.


Assuntos
Proteínas de Bactérias , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Celulose , Histidina , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/química , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Fosfotransferases/genética , Carboidratos , Firmicutes/genética , DNA
10.
J Environ Manage ; 331: 117301, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36681035

RESUMO

As an efficient wastewater pretreatment biotechnology, electrostimulated hydrolysis acidification (eHA) has been used to accelerate the removal of refractory pollutants, which is closely related to the effects of electrostimulation on microbial interspecies associations. However, the ecological processes underpinning such linkages remain unresolved, especially for the microbial communities derived from different niches, such as the electrode surface and plankton. Herein, the principles of cross-niche microbial associations and community assembly were investigated using molecular ecological network and phylogenetic bin-based null model analysis (iCAMP) based on 16S rRNA gene sequences. The electrostimulated planktonic sludge and electrode biofilm displayed significantly (P < 0.05) 1.67 and 1.53 times higher organic nitrogen pollutant (azo dye Alizarin Yellow R) degradation efficiency than non-electrostimulation group, and the corresponding microbial community composition and structure were significantly (P < 0.05) changed. Electroactive bacteria and functional degraders were enriched in the electrode biofilm and planktonic sludge, respectively. Notably, electrostimulation strengthened the synergistic microbial associations (1.8 times more links) between sludge and biofilm members. Additionally, both electrostimulation and cross-niche microbial associations induced greater importance of deterministic assembly. Overall, this study highlights the specificity of cross-electrode surface microbial associations and ecological processes with electrostimulation and advances our understanding of the manipulation of sludge microbiomes in engineered wastewater treatment systems.


Assuntos
Esgotos , Purificação da Água , Nitrogênio , Filogenia , RNA Ribossômico 16S/genética , Reatores Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA