Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 120(3): 033203, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29400507

RESUMO

We demonstrate that ultrashort pulses carry the possibility for a new regime of light-matter interaction with nonadiabatic electron processes sensitive to the envelope derivative of the light pulse. A standard single pulse with its two peaks in the derivative separated by the width of the pulse acts in this regime like a traditional double pulse. The two ensuing nonadiabatic ionization bursts have slightly different ionization amplitudes. This difference is due to the redistribution of continuum electron energy during the bursts, negligible in standard photoionization. A time-dependent close-coupling approach based on cycle-averaged potentials in the Kramers-Henneberger reference frame permits a detailed understanding of light-pulse derivative-driven electron dynamics.

2.
Phys Rev Lett ; 111(2): 023006, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23889395

RESUMO

We measure photoelectron angular distributions of noble gases in intense elliptically polarized laser fields, which indicate strong structure-dependent Coulomb asymmetry. Using a dedicated semiclassical model, we have disentangled the contribution of direct ionization and multiple forward scattering on Coulomb asymmetry in elliptical laser fields. Our theory quantifies the roles of the ionic potential and initial transverse momentum on Coulomb asymmetry, proving that the small lobes of asymmetry are induced by direct ionization and the strong asymmetry is induced by multiple forward scattering in the ionic potential. Both processes are distorted by the Coulomb force acting on the electrons after tunneling. Lowering the ionization potential, the relative contribution of direct ionization on Coulomb asymmetry substantially decreases and Coulomb focusing on multiple rescattering is more important. We do not observe evident initial longitudinal momentum spread at the tunnel exit according to our simulation.

3.
J Chem Phys ; 137(9): 094101, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22957549

RESUMO

We present an efficient and accurate grid method to study the strong field dynamics of planar H(2)(+) under Born-Oppenheimer approximation. After introducing the elliptical coordinates to the planar H(2)(+), we show that the Coulomb singularities at the nuclei can be successfully overcome so that both bound and continuum states can be accurately calculated by the method of separation of variables. The time-dependent Schrödinger equation (TDSE) can be accurately solved by a two-dimensional discrete variable representation (DVR) method, where the radial coordinate is discretized with the finite-element discrete variable representation for easy parallel computation and the angular coordinate with the trigonometric DVR which can describe the periodicity in this direction. The bound states energies can be accurately calculated by the imaginary time propagation of TDSE, which agree very well with those computed by the separation of variables. We apply the TDSE to study the ionization dynamics of the planar H(2)(+) by short extreme ultra-violet (xuv) pulses, in which case the differential momentum distributions from both the length and the velocity gauge agree very well with those calculated by the lowest order perturbation theory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA