Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Angew Chem Int Ed Engl ; : e202410908, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954489

RESUMO

Efficient occlusion of particulate additives into a single crystal has garnered an ever-increasing attention in materials science because it offers a counter-intuitive yet powerful platform to make crystalline nanocomposite materials with emerging properties. However, precisely controlling the spatial distribution of the guest additives within a host crystal remains highly challenging. We herein demonstrate a unique, straightforward method to engineer the spatial distribution of copolymer nanoparticles within calcite (CaCO3) single crystals by judiciously adjusting initial [Ca2+] concentration used for the calcite precipitation. More specifically, polymerization-induced self-assembly is employed to synthesize well-defined and highly anionic poly(3-sulfopropyl methacrylate potassium)41-block-poly(benzyl methacrylate)500 [PSPMA41-PBzMA500] diblock copolymer nanoparticles, which are subsequently used as model additives during the growth of calcite crystals. Impressively, such guest nanoparticles are preferentially occluded into specific regions of calcite depending on the initial [Ca2+] concentration. These unprecedented phenomena are most probably caused by dynamic change in electrostatic interaction between Ca2+ ions and PSPMA41 chains based on systematic investigations. This study not only showcases a significant advancement in controlling the spatial distribution of guest nanoparticles within host crystals, enabling the internal structure of composite crystals to be rationally tailored via a spatioselective occlusion strategy, but also provides new insights into biomineralization.

2.
J Am Chem Soc ; 145(39): 21546-21553, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37748127

RESUMO

It is highly desirable but technically challenging to precisely control the spatial composition and internal structure of crystalline nanocomposite materials, especially in a one-pot synthetic route. Herein, we demonstrate a versatile pathway to tune the spatial distribution of guest species within a host inorganic crystal via an incorporation strategy. Specifically, well-defined block copolymer nanoparticles, poly(methacrylic acid)x-block-poly(styrene-alt-N-phenylmaleimide)y [PMAAx-P(St-alt-NMI)y], are synthesized by polymerization-induced self-assembly. Such anionic nanoparticles can supra-assemble onto the surface of larger cationic nanoparticles via an electrostatic interaction, forming colloidal nanocomposite particles (CNPs). Remarkably, such CNPs can be incorporated into calcite single crystals in a spatially controlled manner: the depth of CNPs incorporation into calcite is tunable. Systematic investigation indicates that this interesting phenomenon is governed by the colloidal stability of CNPs, which in turn is dictated by the PMAAx-P(St-alt-NMI)y adsorption density and calcium ion concentration. This study opens up a general and efficient route for the preparation of a wide range of crystalline nanocomposite materials with a controlled internal composition and structure.

3.
Angew Chem Int Ed Engl ; 62(19): e202300031, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36895104

RESUMO

Biominerals can exhibit exceptional mechanical properties owing to their hierarchically-ordered organic/inorganic nanocomposite structure. However, synthetic routes to oriented artificial biominerals of comparable complexity remain a formidable technical challenge. Herein we design a series of soft, deformable nanogels that are employed as particulate additives to prepare nanogel@calcite nanocomposite crystals. Remarkably, such nanogels undergo a significant morphological change-from spherical to pseudo-hemispherical-depending on their degree of cross-linking. This deformation occurs normal to the growth direction of the (104) face of the calcite and the underlying occlusion mechanism is revealed by in situ atomic force microscopy studies. This model system provides new mechanistic insights regarding the formation of oriented structures during biomineralization and offers new avenues for the design of synthetic nanocomposites comprising aligned anisotropic nanoparticles.

4.
Small ; 19(18): e2207843, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36717276

RESUMO

Direct occlusion of guest nanoparticles into host crystals enables the straightforward preparation for various of nanocomposite materials with emerging properties. Therefore, it is highly desirable to elucidate the 'design rules' that govern efficient nanoparticle occlusion. Herein, a series of sterically-stabilized nanoparticles are rationally prepared, where the surface stabilizer chains of such nanoparticles are composed of either poly(methacrylic acid), or poly(glycerol monomethacrylate), or poly((2-hydroxy-3-(methacryloyloxy)propyl)serine). Systematic investigation reveals that hydroxyl groups and carboxyl groups play a synergistic role in driving nanoparticle incorporation into calcite crystals, where the hydroxyl groups enhance colloidal stability of the nanoparticles and the carboxyl groups provide binding sites for efficient occlusion. The generality of these findings is further validated by extending it to polymer-stabilized gold nanoparticles. This study demonstrates that precision synthesis of polymer stabilizers comprising of synergistic functional groups can significantly promote nanoparticle occlusion, thus enabling the efficient construction of organic-inorganic hybrid materials via nanoparticle occlusion strategy.

5.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1008907

RESUMO

There are some limitations in the localization of epileptogenic zone commonly used by human eyes to identify abnormal discharges of intracranial electroencephalography in epilepsy. However, at present, the accuracy of the localization of epileptogenic zone by extracting intracranial electroencephalography features needs to be further improved. As a new method using dynamic network model, neural fragility has potential application value in the localization of epileptogenic zone. In this paper, the neural fragility analysis method was used to analyze the stereoelectroencephalography signals of 35 seizures in 20 patients, and then the epileptogenic zone electrodes were classified using the random forest model, and the classification results were compared with the time-frequency characteristics of six different frequency bands extracted by short-time Fourier transform. The results showed that the area under curve (AUC) of epileptic focus electrodes based on time-frequency analysis was 0.870 (delta) to 0.956 (high gamma), and its classification accuracy increased with the increase of frequency band, while the AUC by using neural fragility could reach 0.957. After fusing the neural fragility and the time-frequency characteristics of the γ and high γ band, the AUC could be further increased to 0.969, which was improved on the original basis. This paper verifies the effectiveness of neural fragility in identifying epileptogenic zone, and provides a theoretical reference for its further clinical application.


Assuntos
Humanos , Eletroencefalografia/métodos , Epilepsia/diagnóstico , Convulsões , Técnicas Estereotáxicas
6.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-970687

RESUMO

Electroencephalogram (EEG) is characterized by high temporal resolution, and various EEG analysis methods have developed rapidly in recent years. The EEG microstate analysis method can be used to study the changes of the brain in the millisecond scale, and can also present the distribution of EEG signals in the topological level, thus reflecting the discontinuous and nonlinear characteristics of the whole brain. After more than 30 years of enrichment and improvement, EEG microstate analysis has penetrated into many research fields related to brain science. In this paper, the basic principles of EEG microstate analysis methods are summarized, and the changes of characteristic parameters of microstates, the relationship between microstates and brain functional networks as well as the main advances in the application of microstate feature extraction and classification in brain diseases and brain cognition are systematically described, hoping to provide some references for researchers in this field.


Assuntos
Eletroencefalografia , Encéfalo , Cognição
7.
Inorg Chem ; 61(40): 16203-16210, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36150182

RESUMO

The direct incorporation of guest crystals into another type of host crystals during the formation of the latter is technically challenging due to the large difference in surface energy for different crystalline components. Nevertheless, we herein demonstrate that metal-organic frameworks (MOFs, UiO-66-NH2 as a model guest crystal) after postsynthetic modification with poly(methacrylic acid) can be efficiently incorporated into calcite single crystals, forming a unique composite structure where the MOF crystals are uniformly distributed throughout the whole calcite host crystals. Remarkably, such MOF@calcite composite crystals exhibit superior performance in fluoride removal compared with the MOF or calcite alone. Moreover, this incorporation strategy is general as it can be extended to other guest particles. In principle, this study opens up a versatile avenue for the rational design and preparation of a wide range of hybrid functional materials with controllable compositions and enhanced physicochemical properties.

8.
Artigo em Inglês | MEDLINE | ID: mdl-35657958

RESUMO

The all-day passive radiative cooler has emerged as one of the state-of-the-art energy-saving cooling tool kits but routinely suffers from limited processability, high cost, and complicated fabrication processes, which impede large-scale applications. To address these challenges, this work exploits a polymer-based passive radiative cooler with optimized turbidity, reconfigurability, and recyclability. These cooling membranes are fabricated via selective condensation of octyl side chain-modified polyvinyl alcohol through a non-solvent-induced phase separation method. The rational tuning over spatial organization and distribution of the air-polymer interface renders optimized bright whiteness with solar reflectance at 96%. Meanwhile, the abundant -C-O-C- bonds endow such membranes with infrared thermal emittance over 90%. The optimized membrane realizes a subambient cooling of ∼5.7 °C with an average cooling power of ∼81 W m-2 under a solar intensity of ∼528 W m-2. Furthermore, the supramolecule nature of the developed passive radiative cooling membrane bears enhanced shape malleability and recyclability, substantially enhancing its conformability to the complex geometry and extending its life for an eco-friendly society.

9.
Macromol Rapid Commun ; 43(14): e2100793, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35078274

RESUMO

Efficient occlusion of guest nanoparticles into host single crystals opens up a straightforward and versatile way to construct functional crystalline nanocomposites. This new technique has attracted increasing research interest because it enables the composition, structure, and properties of the resulting nanocomposites to be well-controlled. This review aims to provide a comprehensive summary of nanoparticle occlusion within inorganic crystals. First, recently-developed strategies for the occlusion of various colloidal particles (e.g., diblock copolymer nanoparticles, polymer-modified inorganic nanoparticles, oil droplets, etc.) within host crystals (e.g., CaCO3 , ZnO, or ZIF-8) are summarized. Second, new results pertaining to spatially-controlled occlusion and the physical mechanism of nanoparticle occlusion are briefly discussed. Finally, the physicochemical properties and potential applications of various functional nanocomposite crystals constructed via nanoparticle occlusion are highlighted and the perspective on the likely future for this research topic is also offered.

10.
Neurochem Int ; 150: 105180, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34509561

RESUMO

The identity of the mechanism that controls aggressive behavior in rodents is unclear. Serotonin (5-HT) and GABA are associated with aggressive behavior in rodents. However, the regulatory relationship between these chemicals in the different brain regions of rats has not been fully defined. This study aimed to clarify the role of GABABR1 in DRN-mediated GABA to regulate 5-HT expression in multiple brain regions in male rats with high and low aggressive behavior. Rat models of highly and less aggressive behavior were established through social isolation plus resident intruder. On this basis, GABA content in the DRN and 5-HT contents in the PFC, hypothalamus, hippocampus and DRN were detected using ELISA. Co-expression of 5-HT and GB1 in the DRN was detected by immunofluorescence and immunoelectron microscopy at the tissue and subcellular levels, respectively. GB1-specific agonist baclofen and GB1-specific inhibitor CGP35348 were injected into the DRN by stereotaxic injection. Changes in 5-HT levels in the PFC, hypothalamus and hippocampus were detected afterward. After modeling, rats with highly aggressive behavior exhibited higher aggressive behavior scores, shorter latencies of aggression, and higher total distances in the open field test than rats with less aggressive behavior. The contents of 5-HT in the PFC, hypothalamus and hippocampus of rats with high and low aggressive behavior (no difference between the two groups) were significantly decreased, but the change in GABA content in the DRN was the opposite. GB1 granules could be found on synaptic membranes containing 5-HT granules, which indicated that 5-HT neurons in the DRN co-expressed with GB1, which also occurred in double immunofluorescence results. At the same time, we found that the expression of GB1 in the DRN of rats with high and low aggressive behavior was significantly increased, and the expression of GB1 in the DRN of rats with low aggressive behavior was significantly higher than that in rats with high aggressive behavior. Nevertheless, the expression of 5-HT in DRN was opposite in these two groups. After microinjection of baclofen into the DRN, the 5-HT contents in the PFC, hypothalamus and hippocampus of rats in each group decreased significantly. In contrast, the 5-HT contents in the PFC, hypothalamus and hippocampus of rats in each group increased significantly after injection with CGP35348. The significant increase in GABA in the DRN combined with the significant increase in GB1 in the DRN further mediated the synaptic inhibition effect, which reduced the 5-HT level of 5-HT neurons in the DRN, resulting in a significant decrease in 5-HT levels in the PFC, hypothalamus and hippocampus. Therefore, GB1-mediated GABA regulation of 5-HT levels in the PFC, hypothalamus and hippocampus is one of the mechanisms of highly and less aggressive behavior originating in the DRN. The increased GB1 level in the DRN of LA-behavior rats exhibited a greater degree of change than in the HA-group rats, which indicated that differently decreased 5-HT levels in the DRN may be the internal mechanisms of high and low aggression behaviors.


Assuntos
Agressão/fisiologia , Encéfalo/metabolismo , Núcleo Dorsal da Rafe/metabolismo , Receptores de GABA-B/biossíntese , Serotonina/biossíntese , Ácido gama-Aminobutírico/biossíntese , Agressão/psicologia , Animais , Agonistas dos Receptores de GABA-B/administração & dosagem , Expressão Gênica , Masculino , Microinjeções/métodos , Ratos , Receptores de GABA-B/genética , Serotonina/genética , Isolamento Social/psicologia , Ácido gama-Aminobutírico/genética
11.
Environ Technol ; 42(11): 1693-1702, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31591951

RESUMO

Dynamic three-dimensional electrode system treatment of cyanide wastewater used coal-based electrodes as cathode and anode, activated carbon as particle electrodes, the effects of applied voltage, reaction time and flow rate on ion removal rate were studied. SEM-EDS and XPS were used to study the morphology of coal-based electrode and the composition and existing state of the load substances, and the reaction mechanism were analysed and discussed. The results show that the removal rates of CNT, Cu, Zn, CN-, SCN- in cyanide wastewater were 97.03%, 95.79%, 99.82%, 99.42% and 94.19%, respectively, when the applied voltage of 4 V, the electrode distance of 10 mm, the flow rate of 30 ml/min, the reaction time of 2.5 h and the dosage of activated carbon particles of 2 g. The applied voltage is the key factor affecting ion removal. When the voltage was 2 V, the ion removal is mainly due to the synergistic effect of chemisorption and electrosorption. The CN-, SCN-, and metal cyanide complex anions in wastewater migrate to the anode of coal-based anode and particle electrode rapidly under the combined action of electric field and magnetic stirring. On the surface of porous coal-based electrode, the removal of CN-, SCN- was mainly attributed to the oxidation of oxygen evolution from the anode reaction, while the removal of Cu, Zn and other metal ions was mainly by the electrodeposition process on the cathode surface.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Carvão Vegetal , Cianetos , Eletrodos , Oxirredução
12.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-921820

RESUMO

Analyzing the influence of mixed emotional factors on false memory through brain function network is helpful to further explore the nature of brain memory. In this study, Deese-Roediger-Mc-Dermott (DRM) paradigm electroencephalogram (EEG) experiment was designed with mixed emotional memory materials, and different kinds of music were used to induce positive, calm and negative emotions of three groups of subjects. For the obtained false memory EEG signals, standardized low resolution brain electromagnetic tomography algorithm (sLORETA) was applied in the source localization, and then the functional network of cerebral cortex was built and analyzed. The results show that the positive group has the most false memories [(83.3 ± 6.8)%], the prefrontal lobe and left temporal lobe are activated, and the degree of activation and the density of brain network are significantly larger than those of the calm group and the negative group. In the calm group, the posterior prefrontal lobe and temporal lobe are activated, and the collectivization degree and the information transmission rate of brain network are larger than those of the positive and negative groups. The negative group has the least false memories [(73.3 ± 2.2)%], and the prefrontal lobe and right temporal lobe are activated. The brain network is the sparsest in the negative group, the degree of centralization is significantly larger than that of the calm group, but the collectivization degree and the information transmission rate of brain network are smaller than the positive group. The results show that the brain is stimulated by positive emotions, so more brain resources are used to memorize and associate words, which increases false memory. The activity of the brain is inhibited by negative emotions, which hinders the brain's memory and association of words and reduces false memory.


Assuntos
Humanos , Eletroencefalografia , Emoções , Memória , Música , Córtex Pré-Frontal
13.
Chem Sci ; 11(2): 355-363, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-32874489

RESUMO

Single crystals containing nanoparticles represent a unique class of nanocomposites whose properties are defined by both their compositions and the structural organization of the dispersed phase in the crystalline host. Yet, there is still a poor understanding of the relationship between the synthesis conditions and the structures of these materials. Here ptychographic X-ray computed tomography is used to visualize the three-dimensional structures of two nanocomposite crystals - single crystals of calcite occluding diblock copolymer worms and vesicles. This provides unique information about the distribution of the copolymer nano-objects within entire, micron-sized crystals with nanometer spatial resolution and reveals how occlusion is governed by factors including the supersaturation and calcium concentration. Both nanocomposite crystals are seen to exhibit zoning effects that are governed by the solution composition and interactions of the additives with specific steps on the crystal surface. Additionally, the size and shape of the occluded vesicles varies according to their location within the crystal, and therefore the solution composition at the time of occlusion. This work contributes to our understanding of the factors that govern nanoparticle occlusion within crystalline materials, where this will ultimately inform the design of next generation nanocomposite materials with specific structure/property relationships.

14.
BMC Cardiovasc Disord ; 20(1): 351, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727406

RESUMO

BACKGROUND: To investigate the clinical value of heart failure echocardiography index (HFEI) in evaluating the cardiac function and predicting the prognosis of patients with different types of heart failure (HF). METHODS: Four hundred eighty-nine consecutively admitted HF patients were divided into three groups: HF with reduced ejection (HFrEF), HF with mid-range ejection fraction (HFmrEF), and HF with preserved ejection fraction (HFpEF). The baseline characteristics and ultrasound indexes were compared between the three groups. The correlation between HFEI and one-year risk of adverse events was compared by multivariate logistic regression. The clinical value of HFEI and plasma level of NT-proBNP in assessing the prognosis of patients with chronic heart failure (CHF) was analyzed by the receiver operating characteristic (ROC) curve. RESULTS: HFEI in HFrEF was significantly higher than that in HFmrEF and HFpEF. Multivariate regression analysis indicated that HFEI and plasma level of NT-proBNP were independent risk factors for predicting the short-time prognosis of HF patients. The ROC curve indicated that the HFEI cutoff level of 3.5 and the plasma NT-proBNP level of 3000 pg/ml predicted a poor prognosis of CHF patients with a sensitivity of 64% and a specificity of 75% vs. 68 and 65%. CONCLUSION: HFEI can comprehensively evaluate the overall cardiac function of patients with various types of HF, and may prove to be an important index of assessing the prognosis of HF patients.


Assuntos
Ecocardiografia , Insuficiência Cardíaca/diagnóstico por imagem , Volume Sistólico , Função Ventricular Esquerda , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Feminino , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Peptídeo Natriurético Encefálico/sangue , Fragmentos de Peptídeos/sangue , Valor Preditivo dos Testes , Prognóstico , Reprodutibilidade dos Testes
15.
Angew Chem Int Ed Engl ; 59(41): 17966-17973, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32613700

RESUMO

In principle, nanoparticle occlusion within crystals provides a straightforward and efficient route to make new nanocomposite materials. However, developing a deeper understanding of the design rules underpinning this strategy is highly desirable. In particular, controlling the spatial distribution of the guest nanoparticles within the host crystalline matrix remains a formidable challenge. Herein, we show that the surface chemistry of the guest nanoparticles and the [Ca2+ ] concentration play critical roles in determining the precise spatial location of the nanoparticles within calcite crystals. Moreover, in situ studies provide important mechanistic insights regarding surface-confined nanoparticle occlusion. Overall, this study not only provides useful guidelines for efficient nanoparticle occlusion, but also enables the rational design of patterned calcite crystals using model anionic block copolymer vesicles.

16.
Acc Chem Res ; 53(6): 1176-1186, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32421304

RESUMO

In principle, the incorporation of guest nanoparticles within host crystals should provide a straightforward and versatile route to a wide range of nanocomposite materials. However, crystallization normally involves expelling impurities, so nanoparticle occlusion is both counter-intuitive and technically challenging. Clearly, the nanoparticles should have a strong interaction with the growing crystalline lattice, but quantifying such an affinity has been challenging; the basic principles that govern efficient nanoparticle occlusion within inorganic single crystals are rather poorly understood. In the past few years, we have focused on the elucidation of robust design rules for such systems; our progress is summarized in this article.Polymerization-induced self-assembly (PISA) is widely recognized as a powerful platform technology for the preparation of a broad range of model organic nanoparticles. Herein, PISA was exploited to prepare sterically stabilized diblock copolymer nano-objects (e.g., spheres, worms, or vesicles) of varying size using steric stabilizers of well-defined chain length, variable anionic charge density, tunable surface density, and adjustable chemical functionality (e.g., carboxylic acid, phosphate, sulfate or sulfonate groups). Thus, we were able to systematically investigate how such structural parameters influence nanoparticle occlusion. Given its commercial importance for many industrial sectors, calcium carbonate was selected as the model host crystal for nanoparticle occlusion studies. Perhaps surprisingly, the extent of nanoparticle occlusion is not particularly sensitive to nanoparticle size or morphology. However, the steric stabilizer chain length can play a key role: relatively short chains lead to surface-confined occlusion, while sufficiently long chains enable uniform nanoparticle occlusion to be achieved throughout the crystal lattice (albeit sometimes inducing a significant change in crystal morphology). Optimizing the anionic charge density and surface density of the stabilizer chains is required to maximize the extent of nanoparticle occlusion, while steric stabilizer chains comprising anionic carboxylate groups led to greater occlusion compared to those composed of phosphate, sulfate, or sulfonate groups when examining a model vesicle system.Subsequently, our occlusion studies were extended to include functional hybrid nanocomposite crystals. For example, the spatially controlled occlusion of poly(glycerol monomethacrylate)-stabilized gold nanoparticles was achieved within semiconductive ZnO crystals by either controlling the nanoparticle concentration or by delaying their addition to the reaction mixture. Moreover, oil droplets of up to 500 nm have been incorporated into calcite crystals at up to 11% by mass, despite the large mismatch in surface energy between the hydrophobic oil droplets and the ionic crystal lattice. We have also explored a "Trojan horse" strategy, whereby cargos comprising nanoparticles or soluble dye molecules are first encapsulated within anionic block copolymer vesicles prior to their incorporation within calcite crystals. This approach offers a generic and efficient strategy for the occlusion of many types of guest species into single crystals. In summary, we have established important guidelines for efficient nanoparticle occlusion within crystals, which opens up new avenues for the synthesis of next-generation hybrid materials.

17.
Langmuir ; 36(14): 3730-3736, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32216260

RESUMO

Reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization of benzyl methacrylate is used to prepare a series of well-defined poly(stearyl methacrylate)-poly(benzyl methacrylate) (PSMA-PBzMA) diblock copolymer nanoparticles in mineral oil at 90 °C. A relatively long PSMA54 precursor acts as a steric stabilizer block and also ensures that only kinetically trapped spheres are obtained, regardless of the target degree of polymerization (DP) for the core-forming PBzMA block. This polymerization-induced self-assembly (PISA) formulation provides good control over the particle size distribution over a wide size range (24-459 nm diameter). 1H NMR spectroscopy studies confirm that high monomer conversions (≥96%) are obtained for all PISA syntheses while transmission electron microscopy and dynamic light scattering analyses show well-defined spheres with a power-law relationship between the target PBzMA DP and the mean particle diameter. Gel permeation chromatography studies indicate a gradual loss of control over the molecular weight distribution as higher DPs are targeted, but well-defined morphologies and narrow particle size distributions can be obtained for PBzMA DPs up to 3500, which corresponds to an upper particle size limit of 459 nm. Thus, these are among the largest well-defined spheres with reasonably narrow size distributions (standard deviation ≤20%) produced by any PISA formulation. Such large spheres serve as model sterically stabilized particles for analytical centrifugation studies.

18.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-828130

RESUMO

Background music has been increasingly affecting people's lives. The research on the influence of background music on working memory has become a hot topic in brain science. In this paper, an improved electroencephalography (EEG) experiment based on n-back paradigm was designed. Fifteen university students without musical training were randomly selected to participate in the experiment, and their behavioral data and the EEG data were collected synchronously in order to explore the influence of different types of background music on spatial positioning cognition working memory. The exact low-resolution brain tomography algorithm (eLORETA) was applied to localize the EEG sources and the cross-correlation method was used to construct the cortical brain function networks based on the EEG source signals. Then the characteristics of the networks under different conditions were analyzed and compared to study the effects of background music on people's working memory. The results showed that the difference of peak periods after stimulated by different types of background music were mainly distributed in the signals of occipital lobe and temporal lobe ( < 0.05). The analysis results showed that the brain connectivity under the condition with background music were stronger than those under the condition without music. The connectivities in the right occipital and temporal lobes under the condition of rock music were significantly higher than those under the condition of classical music. The node degrees, the betweenness centrality and the clustering coefficients under the condition without music were lower than those under the condition with background music. The node degrees and clustering coefficients under the condition of classical music were lower than those under the condition of rock music. It indicates that music stimulation increases the brain activity and has an impact on the working memory, and the effect of rock music is more remarkable than that of classical music. The behavioral data showed that the response accuracy in the state of no music, classical music and rock music were 86.09% ± 0.090%, 80.96% ± 0.960% and 79.36% ± 0.360%, respectively. We conclude that background music has a negative impact on the working memory, for it takes up the cognitive resources and reduces the cognitive ability of spatial location.


Assuntos
Humanos , Encéfalo , Cognição , Eletroencefalografia , Memória de Curto Prazo , Música
19.
Angew Chem Int Ed Engl ; 58(26): 8692-8697, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-30998292

RESUMO

Polymerization-induced self-assembly (PISA) mediated by reversible addition-fragmentation chain transfer (RAFT) polymerization offers a platform technology for the efficient and versatile synthesis of well-defined sterically stabilized block copolymer nanoparticles. Herein we synthesize a series of such nanoparticles with tunable anionic charge density within the stabilizer chains, which are prepared via statistical copolymerization of anionic 2-(phosphonooxy)ethyl methacrylate (P) with non-ionic glycerol monomethacrylate (G). Systematic variation of the P/G molar ratio enables elucidation of the minimum number of phosphate groups per copolymer chain required to promote nanoparticle occlusion within a model inorganic crystal (calcite). Moreover, the extent of nanoparticle occlusion correlates strongly with the phosphate content of the steric stabilizer chains. This study is the first to examine the effect of systemically varying the anionic charge density of nanoparticles on their occlusion efficiency and sheds new light on maximizing the loading of guest nanoparticles within calcite host crystals.

20.
Chem Sci ; 10(15): 4200-4208, 2019 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-31015951

RESUMO

Traditionally, post-polymerization processing routes have been used to obtain a wide range of block copolymer morphologies. However, this self-assembly approach is normally performed at rather low copolymer concentration, which precludes many potential applications. Herein, we report a facile method for the preparation of block copolymer particles exhibiting complex internal morphology via polymerization-induced self-assembly (PISA). More specifically, a series of diblock copolymers were synthesized by reversible addition-fragmentation chain transfer (RAFT) alternating copolymerization of styrene (St) with N-phenylmaleimide (NMI) using a poly(N,N-dimethylacrylamide) (PDMAC) stabilizer as a soluble precursor. Conducting such PISA syntheses in a 50 : 50 w/w ethanol/methyl ethyl ketone (MEK) mixture leads directly to the formation of micrometer-sized PDMAC-P(St-alt-NMI) diblock copolymer particles at 20% w/w solids. Adjusting the degree of polymerization (DP) of the core-forming P(St-alt-NMI) block to target highly asymmetric copolymer compositions provides convenient access to an inverse bicontinuous phase. TEM studies of intermediate structures provide useful insights regarding the mechanism of formation of this phase. SEM studies indicate that the final copolymer particles comprise perforated surface layers and possess nanostructured interiors. In addition, control experiments using 1,4-dioxane suggest that the high chain mobility conferred by the MEK co-solvent is essential for the formation of such inverse bicontinuous structures. One-pot PISA formulations are reproducible and involve only cheap, commercially available starting materials, so they should be readily amenable to scale-up. This augurs well for the potential use of such nanostructured micrometer-sized particles as new organic opacifiers for paints and coatings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...