Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(12): e202318072, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38282137

RESUMO

Azetidines, being four-membered N-heterocycles, possess significant potential in contemporary medicinal chemistry owing to their favorable pharmacokinetic properties. Regrettably, the incorporation of functionalized azetidines into pharmaceutical lead structures has been impeded by the absence of efficient synthetic methods for their synthesis. In this study, a Rh-catalyzed one-carbon ring expansion of aziridines with vinyl-N-triftosylhydrazones is presented, which facilitates the synthesis of high value-added 2-alkenyl azetidine products. This research represents the first example of ring expansion of aziridines enabled by vinyl carbenes. Additionally, a one-pot two-step protocol, initiated from cinnamaldehyde, was successfully achieved, offering a step-economical and facile approach for the synthesis of these compounds. The pivotal aspect of this successful transformation lies in the in situ formation of an alkenyl aziridinium ylide intermediate. Experimental investigations, coupled with computational studies, suggest that a diradical pathway is involved in the reaction mechanism.

2.
Angew Chem Int Ed Engl ; 63(1): e202313807, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37966100

RESUMO

The skeletal ring expansion of heteroarenes through carbene insertion is gaining popularity in synthetic chemistry. Efficient strategies for heterocyclic ring expansion to access heterocycles containing a fluoroalkyl quaternary carbon center through fluoroalkyl carbene insertion are highly desirable because of their broad applications in medicinal chemistry. Herein, we report a general strategy for the dearomative one-carbon insertion of azoles using fluoroalkyl N-triftosylhydrazones as fluoroalkyl carbene precursors, resulting in ring-expanded heterocycles in excellent yields with good functional-group compatibility. The broad generality of this methodology in the late-stage diversification of pharmaceutically interesting bioactive molecules and versatile transformations of the products has been demonstrated.

3.
Nanomaterials (Basel) ; 13(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36985983

RESUMO

Owing to the high efficiency and specificity in moderate conditions, enzymatic biofuel cells (EBFCs) have gained significant interest as a promising energy source for wearable devices. However, the instability of the bioelectrode and the lack of efficient electrical communication between the enzymes and electrodes are the main obstacles. Herein, defect-enriched 3D graphene nanoribbons (GNRs) frameworks are fabricated by unzipping multiwall carbon nanotubes, followed by thermal annealing. It is found that defective carbon shows stronger adsorption energy towards the polar mediators than the pristine carbon, which is beneficial to improving the stability of the bioelectrodes. Consequently, the EBFCs equipped with the GNRs exhibit a significantly enhanced bioelectrocatalytic performance and operational stability, delivering an open-circuit voltage and power density of 0.62 V, 70.7 µW/cm2, and 0.58 V, 18.6 µW/cm2 in phosphate buffer solution and artificial tear, respectively, which represent the high levels among the reported literature. This work provides a design principle according to which defective carbon materials could be more suitable for the immobilization of biocatalytic components in the application of EBFCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...