Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metab Eng ; 54: 117-126, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30959245

RESUMO

Bacterial polyhydroxyalkanoates (PHA) are a family of intracellular polyester granules with sizes ranging from 100 to 500 nm. Due to their small sizes, it has been very difficult to separate the PHA granules from the bacterial broths. This study aims to engineer the PHA size control mechanism to obtain large PHA granular sizes beneficial for the separation. It has been reported that phasin (PhaP) is an amphiphilic protein located on the surface of PHA granules functioning to regulate sizes and numbers of PHA granules in bacterial cells, deletions on PhaPs result in reduced PHA granule number and enhanced granule sizes. Three genes phaP1, phaP2 and phaP3 encoding three PhaP proteins were deleted in various combinations in halophilic bacterium Halomonas bluephagenesis TD01. The phaP1-knockout strain generated much larger PHA granules with almost the same size as their producing cells without significantly affecting the PHA accumulation yet with a reduced PHA molecular weights. In contrast, the phaP2- and phaP3-knockout strains produced slightly larger sizes of PHA granules with increased PHA molecular weights. While PHA accumulation by phaP3-knockout strains showed a significant reduction. All of the PhaP deletion efforts could not form PHA granules larger than a normal size of H. bluephagenesis TD01. It appears that the PHA granular sizes could be limited by bacterial cell sizes. Therefore, genes minC and minD encoding proteins that block formation of cell fission rings (Z-rings) were over-expressed in various phaP deleted H. bluephagenesis TD01, resulting in large cell sizes of H. bluephagenesis TD01 containing PHA granules with sizes of up to 10 µm that has never been observed previously. It can be concluded that PHA granule sizes are limited by the cell sizes. By engineering a large cell morphology large PHA granules can be produced by PhaP deleted mutants.


Assuntos
Técnicas de Silenciamento de Genes , Halomonas , Corpos de Inclusão , Engenharia Metabólica , Poli-Hidroxialcanoatos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Halomonas/genética , Halomonas/metabolismo , Corpos de Inclusão/genética , Corpos de Inclusão/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Poli-Hidroxialcanoatos/genética
2.
ACS Synth Biol ; 7(8): 1897-1906, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30024739

RESUMO

Promoters for the expression of heterologous genes in Halomonas bluephagenesis are quite limited, and many heterologous promoters function abnormally in this strain. Pporin, a promoter of the strongest expressed protein porin in H. bluephagenesis, is one of the few promoters available for heterologous expression in H. bluephagenesis, yet it has a fixed transcriptional activity that cannot be tuned. A stable promoter library with a wide range of activities is urgently needed. This study reports an approach to construct a promoter library based on the Pporin core region, namely, from the -35 box to the transcription start site, a spacer and an insulator. Saturation mutagenesis was conducted inside the promoter core region to significantly increase the diversity within the promoter library. The promoter library worked in both E. coli and H. bluephagenesis, covering a wide range of relative transcriptional strengths from 40 to 140 000. The library is therefore suitable for the transcription of many different heterologous genes, serving as a platform for protein expression and fine-tuned metabolic engineering of H. bluephagenesis TD01 and its derivative strains. H. bluephagenesis strains harboring the orfZ gene encoding 4HB-CoA transferase driven by selected promoters from the library were constructed, the best one produced over 100 g/L cell dry weight containing 80% poly(3-hydroxybutyrate- co-11 mol % 4-hydroxybutyrate) with a productivity of 1.59 g/L/h after 50 h growth under nonsterile fed-batch conditions. This strain was found the best for P(3HB- co-4HB) production in the laboratory scale.


Assuntos
Halomonas/metabolismo , Engenharia Metabólica/métodos , Poli-Hidroxialcanoatos/metabolismo , Regiões Promotoras Genéticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...