Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 400
Filtrar
1.
Heliyon ; 10(11): e32498, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38912473

RESUMO

Dental follicle cells (DFCs) promote bone regeneration in vivo and in vitro. Circular RNAs (circRNAs) play crucial roles in bone development and regeneration. Our previous study demonstrated the upregulation of circFgfr2 expression during the osteogenic differentiation of DFCs. However, the molecular mechanisms and functional roles of circFgfr2 in DFCs osteogenesis remain unclear. In this study, we aimed to investigate the subcellular localization of circFgfr2 in DFCs using fluorescence in situ hybridization. In vitro investigations demonstrated that circFgfr2 overexpression promoted osteogenic differentiation, as evidenced by real-time quantitative polymerase chain reaction. By integrating the outcomes of bioinformatics analyses, dual luciferase reporter experiments, and chromatin isolation by RNA purification, we identified circFgfr2 as a sponge for miR-133a-3p, a key regulator of osteogenic differentiation. Moreover, miR-133a-3p suppressed osteogenic differentiation by targeting DLX3 and RUNX2 in DFCs. We validated that circFgfr2 promoted the osteogenic differentiation of DFCs through the miR-133a-3p/DLX3 axis. To further investigate the therapeutic potential of circFgfr2 in bone regeneration, we conducted in vivo experiments and histological analyses. Overall, these results confirmed the crucial role of circFgfr2 in promoting osteogenesis. In summary, our findings demonstrated that the circFgfr2/miR-133a-3p/DLX3 pathway acts as a cascade, thereby identifying circFgfr2 as a promising molecular target for bone tissue engineering.

2.
Opt Express ; 32(10): 16761-16776, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38858874

RESUMO

The small imaging size of targets over long distances results in the loss of geometry and spatial features. Current methods are subject to sampling limitations and cannot accurately capture the spatial features of sub-pixel targets. This paper proposes a method to accurately locate and extract the fine spatial features of sub-pixel targets through aperture coding and micro-scanning imaging. First, the formation mechanism of imaging features for sub-pixel targets is analyzed. Second, the optical aperture is anisotropically coded in different directions to modulate the spreading spots of the target. The primary spreading direction and the center of the anisotropic spreading spots are extracted. The contour and the location of the target are determined from the spreading length and the intersections of the primary spreading directions. Then, the target is sampled by different detector units through various micro-scanning offsets. The pixel units containing different sub-pixel components of the target after offset are determined based on the location results. The fine spatial distribution of the sub-pixel target is reconstructed based on the intensity variations in the pixel units containing the target. Finally, the accuracy of the sub-pixel target fine spatial feature extraction method is validated. The results show a sub-pixel localization error of less than 0.02 and an effective improvement of the sub-pixel target spatial resolution. This paper provides significant potential for improving the ability to capture spatial features of targets over long distances.

3.
Environ Pollut ; 357: 124163, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38782165

RESUMO

By 2020, China has implemented the use of 10% ethanol-blended-gasoline (E10), which is expected to notably impact vehicular volatile organic compounds (VOCs) emissions. The adoption of E10 reduced certain emissions but raised concerns with about more reactive oxygenated volatile organic compounds (OVOCs). This study aimed to evaluate the impact of E10 on the total VOCs emissions from both exhaust and evaporative emissions by conducting tests on the CHINA V (or CHINA VI) light-duty gasoline vehicles (LDGVs) using 0% ethanol blended gasoline (E0) and E10. E10 reduces VOCs emissions in the exhaust, and reduces the ozone and secondary organic aerosol generation potential of VOCs in the exhaust, as evidenced by the lower emission factors (EFs), ozone formation potentials (OFPs) and secondary organic aerosol formation potential (SOAFPs) in the CHINA V LDGVs. Evaporative emissions showed differences in emitted VOCs, with lower EFs, OFPs and SOAFPs for the CHINA V LDGVs fueled with E10. The CHINA VI LDGVs also exhibited reduced EFs, OFPs and SOAFPs. These findings highlight the environmental benefits of E10 in the CHINA VI-compliant LDGVs; however, the effectiveness of the earlier CHINA V standard vehicles requires further evaluation.

4.
Insects ; 15(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38786869

RESUMO

Genetic mutations leading to premature termination codons are known to have detrimental effects. Using the Lepidoptera model insect, the silkworm (Bombyx mori), we explored the genetic compensatory response triggered by mutations with premature termination codons. Additionally, we delved into the molecular mechanisms associated with the nonsense-mediated mRNA degradation pathway. CRISPR/Cas9 technology was utilized to generate a homozygous bivoltine silkworm line BmTrpA1-/- with a premature termination. Transcript levels were assessed for the BmTrpA paralogs, BmPyrexia and BmPainless as well as for the essential factors Upf1, Upf2, and Upf3a involved in the nonsense-mediated mRNA degradation (NMD) pathway. Upf2 was specifically knocked down via RNA interference at the embryonic stage. The results comfirmed that the BmTrpA1 transcripts with a 2-base deletion generating a premature termination codon in the BmTrpA1-/- line. From day 6 of embryonic development, the mRNA levels of BmPyrexia, BmPainless, Upf1, and Upf2 were significantly elevated in the gene-edited line. Embryonic knockdown of Upf2 resulted in the suppression of the genetic compensation response in the mutant. As a result, the offspring silkworm eggs were able to hatch normally after 10 days of incubation, displaying a non-diapause phenotype. It was observed that a genetic compensation response does exist in BmTrpA1-/-B. mori. This study presents a novel discovery of the NMD-mediated genetic compensation response in B. mori. The findings offer new insights into understanding the genetic compensation response and exploring the gene functions in lepidopteran insects, such as silkworms.

5.
World J Gastrointest Oncol ; 16(5): 1808-1820, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38764811

RESUMO

BACKGROUND: Vessels encapsulating tumor clusters (VETC) represent a recently discovered vascular pattern associated with novel metastasis mechanisms in hepatocellular carcinoma (HCC). However, it seems that no one have focused on predicting VETC status in small HCC (sHCC). This study aimed to develop a new nomogram for predicting VETC positivity using preoperative clinical data and image features in sHCC (≤ 3 cm) patients. AIM: To construct a nomogram that combines preoperative clinical parameters and image features to predict patterns of VETC and evaluate the prognosis of sHCC patients. METHODS: A total of 309 patients with sHCC, who underwent segmental resection and had their VETC status confirmed, were included in the study. These patients were recruited from three different hospitals: Hospital 1 contributed 177 patients for the training set, Hospital 2 provided 78 patients for the test set, and Hospital 3 provided 54 patients for the validation set. Independent predictors of VETC were identified through univariate and multivariate logistic analyses. These independent predictors were then used to construct a VETC prediction model for sHCC. The model's performance was evaluated using the area under the curve (AUC), calibration curve, and clinical decision curve. Additionally, Kaplan-Meier survival analysis was performed to confirm whether the predicted VETC status by the model is associated with early recurrence, just as it is with the actual VETC status and early recurrence. RESULTS: Alpha-fetoprotein_lg10, carbohydrate antigen 199, irregular shape, non-smooth margin, and arterial peritumoral enhancement were identified as independent predictors of VETC. The model incorporating these predictors demonstrated strong predictive performance. The AUC was 0.811 for the training set, 0.800 for the test set, and 0.791 for the validation set. The calibration curve indicated that the predicted probability was consistent with the actual VETC status in all three sets. Furthermore, the decision curve analysis demonstrated the clinical benefits of our model for patients with sHCC. Finally, early recurrence was more likely to occur in the VETC-positive group compared to the VETC-negative group, regardless of whether considering the actual or predicted VETC status. CONCLUSION: Our novel prediction model demonstrates strong performance in predicting VETC positivity in sHCC (≤ 3 cm) patients, and it holds potential for predicting early recurrence. This model equips clinicians with valuable information to make informed clinical treatment decisions.

6.
Plants (Basel) ; 13(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38794493

RESUMO

Plant growth and development are driven by intricate processes, with the cell membrane serving as a crucial interface between cells and their external environment. Maintaining balance and signal transduction across the cell membrane is essential for cellular stability and a host of life processes. Ion channels play a critical role in regulating intracellular ion concentrations and potentials. Among these, K+ channels on plant cell membranes are of paramount importance. The research of Shaker K+ channels has become a paradigm in the study of plant ion channels. This study offers a comprehensive overview of advancements in Shaker K+ channels, including insights into protein structure, function, regulatory mechanisms, and research techniques. Investigating Shaker K+ channels has enhanced our understanding of the regulatory mechanisms governing ion absorption and transport in plant cells. This knowledge offers invaluable guidance for enhancing crop yields and improving resistance to environmental stressors. Moreover, an extensive review of research methodologies in Shaker K+ channel studies provides essential reference solutions for researchers, promoting further advancements in ion channel research.

7.
Front Plant Sci ; 15: 1378738, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660442

RESUMO

Soil salinization poses a mounting global ecological and environmental threat. The identification of genes responsible for negative regulation of salt tolerance and their utilization in crop improvement through gene editing technologies emerges as a swift strategy for the effective utilization of saline-alkali lands. One efficient mechanism of plant salt tolerance is maintaining the proper intracellular K+/Na+ ratio. The Shaker K+ channels play a crucial role in potassium absorption, transport, and intracellular potassium homeostasis in plant cells. Here, the study presents the first genome-wide identification of Shaker K+ channels in Nicotiana tabacum L., along with a detailed bioinformatic analysis of the 20 identified members. Transcriptome analysis revealed a significant up-regulation of NtSKOR1B, an outwardly-rectifying member predominantly expressed in the root tissue of tobacco seedlings, in response to salt stress. This finding was then confirmed by GUS staining of ProNtSKOR1B::GUS transgenic lines and RT-qPCR analysis. Subsequently, NtSKOR1B knockout mutants (ntskor1) were then generated and subjected to salt conditions. It was found that ntskor1 mutants exhibit enhanced salt tolerance, characterized by increased biomass, higher K+ content and elevated K+/Na+ ratios in both leaf and root tissues, compared to wild-type plants. These results indicate that NtSKOR1B knockout inhibits K+ efflux in root and leaf tissues of tobacco seedlings under salt stress, thereby maintaining higher K+/Na+ ratios within the cells. Thus, our study identifies NtSKOR1B as a negative regulator of salt tolerance in tobacco seedlings.

8.
J Adv Res ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38609050

RESUMO

INTRODUCTION: It is estimated that 90% of hyperuricemia cases are attributed to the inability to excrete uric acid (UA). The two main organs in charge of excreting UA are the kidney (70%) and intestine (30%). Previous studies have reported that punicalagin (PU) could protect against kidney and intestinal damages, which makes it a potential candidate for alleviating hyperuricemia. However, the effects and deeper action mechanisms of PU for managing hyperuricemia are still unknown. OBJECTIVE: To investigate the effect and action mechanisms of PU for ameliorating hyperuricemia. METHODS: The effects and action mechanisms of PU on hyperuricemia were assessed using a hyperuricemia mice model. Phenotypic parameters, metabolomics analysis, and 16S rRNA sequencing were applied to explore the effect and fundamental action mechanisms inside the kidney and intestine of PU for improving hyperuricemia. RESULTS: PU administration significantly decreased elevated serum uric acid (SUA) levels in hyperuricemia mice, and effectively alleviated the kidney and intestinal damage caused by hyperuricemia. In the kidney, PU down-regulated the expression of UA resorption protein URAT1 and GLUT9, while up-regulating the expression of UA excretion protein ABCG2 and OAT1 as mediated via the activation of MAKP/NF-κB in hyperuricemia mice. Additionally, PU attenuated renal glycometabolism disorder, which contributed to improving kidney dysfunction and inflammation. Similarly, PU increased UA excretion protein expression via inhibiting MAKP/NF-κB activation in the intestine of hyperuricemia mice. Furthermore, PU restored gut microbiota dysbiosis in hyperuricemia mice. CONCLUSION: This research revealed the ameliorating impacts of PU on hyperuricemia by restoring kidney and intestine damage in hyperuricemia mice, and to be considered for the development of nutraceuticals used as UA-lowering agent.

9.
Sensors (Basel) ; 24(6)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38544045

RESUMO

Trafficability gives tracked vehicles adaptability, stability, and propulsion for various purposes, including deep-sea research in rough terrain. Terrain characteristics affect tracked vehicle mobility. This paper investigates the soil mechanical interaction dynamics between rubber-tracked vehicles and sedimental soils through controlled laboratory-simulated experiments. Focusing on Bentonite and Diatom sedimental soils, which possess distinct shear properties from typical land soils, the study employs innovative user-written subroutines to characterize mechanical models linked to the RecurDyn simulation environment. The experiment is centered around a dual-tracked crawler, which in itself represents a fully independent vehicle. A new three-dimensional multi-body dynamic simulation model of the tracked vehicle is developed, integrating the moist terrain's mechanical model. Simulations assess the vehicle's trafficability and performance, revealing optimal slip ratios for maximum traction force. Additionally, a mathematical model evaluates the vehicle's tractive trafficability based on slip ratio and primary design parameters. The study offers valuable insights and a practical simulation modeling approach for assessing trafficability, predicting locomotion, optimizing design, and controlling the motion of tracked vehicles across diverse moist terrain conditions. The focus is on the critical factors influencing the mobility of tracked vehicles, precisely the sinkage speed and its relationship with pressure. The study introduces a rubber-tracked vehicle, pressure, and moisture sensors to monitor pressure sinkage and moisture, evaluating cohesive soils (Bentonite/Diatom) in combination with sand and gravel mixtures. Findings reveal that higher moisture content in Bentonite correlates with increased track slippage and sinkage, contrasting with Diatom's notable compaction and sinkage characteristics. This research enhances precision in terrain assessment, improves tracked vehicle design, and advances terrain mechanics comprehension for off-road exploration, offering valuable insights for vehicle design practices and exploration endeavors.

10.
World J Oncol ; 15(1): 58-71, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38274720

RESUMO

Background: The aim of the study is to demonstrate that radiomics of preoperative multi-sequence magnetic resonance imaging (MRI) can indeed improve the predictive performance of microvascular invasion (MVI) in hepatocellular carcinoma (HCC). Methods: A total of 206 patients with pathologically confirmed HCC who underwent preoperative enhanced MRI were retrospectively recruited. Univariate and multivariate logistic regression analysis identified the independent clinicoradiologic predictors of MVI present and constituted the clinicoradiologic model. Recursive feature elimination (RFE) was applied to select radiomics features (extracted from six sequence images) and constructed the radiomics model. Clinicoradiologic model plus radiomics model formed the clinicoradiomics model. Five-fold cross-validation was used to validate the three models. Discrimination, calibration, and clinical utility were used to evaluate the performance. Net reclassification improvement (NRI) and integrated discrimination improvement (IDI) were used to compare the prediction accuracy between models. Results: The clinicoradiologic model contained alpha-fetoprotein (AFP)_lg10, radiological capsule enhancement, enhancement pattern and arterial peritumoral enhancement, which were independent risk factors of MVI. There were 18 radiomics features related to MVI constructed the radiomics model. The mean area under the receiver operating curve (AUC) of clinicoradiologic, radiomics and clinicoradiomics model were 0.849, 0.925 and 0.950 in the training cohort and 0.846, 0.907 and 0.933 in the validation cohort, respectively. The three models' calibration curves fitted well, and decision curve analysis (DCA) confirmed the clinical usefulness. Compared with the clinicoradiologic model, the NRI of radiomics and clinicoradiomics model increased significantly by 0.575 and 0.825, respectively, and the IDI increased significantly by 0.280 and 0.398, respectively. Conclusions: Radiomics of preoperative multi-sequence MRI can improve the predictive performance of MVI in HCC.

11.
Bioresour Technol ; 395: 130379, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281547

RESUMO

Squalene, a high-value acyclic triterpenoid compound, is broadly used in the food and medical industries. Although the large acetyl-CoA pool and hydrophobic space of Yarrowia lipolytica are suitable for the accumulation of squalene, the current production level in Y. lipolytica is still not sufficient for industrial production. In this study, two rounds of multicopy integration of genes encoding key enzymes were performed to enhance squalene anabolic flux in the cytoplasm. Furthermore, the mevalonate pathway was imported into peroxisomes through the compartmentalization strategy, and the production of squalene was significantly increased. By augmenting the acetyl-CoA supply in peroxisomes and the cytoplasm, the squalene was boosted to 2549.1 mg/L. Finally, the squalene production reached 51.2 g/L by fed-batch fermentation in a 5-L bioreactor. This is the highest squalene production reported to date for microbial production, and this study lays the foundation for the synthesis of steroids and squalene derivatives.


Assuntos
Esqualeno , Yarrowia , Esqualeno/metabolismo , Metabolismo dos Lipídeos , Yarrowia/genética , Yarrowia/metabolismo , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Citoplasma/metabolismo , Engenharia Metabólica
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123841, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38241933

RESUMO

Due to the very important role in physiological process, a simple and sensitive hemin detection method is necessarily required. Biomass-based carbonized polymer dots (CPDs) have been widely studied especially as fluorescence probe owing to the advantages of low toxicity and the variety of fluorescence color, yet there are still challenges in developing their multi-color emission property from the same raw materials. In this work, red, white and blue emissive CPDs derived from chlorophyll have been synthesized via hydrothermal method. Then white-emitted CPDs (white-CPDs) with the Commission International d'Eclairage (CIE) coordinates at (0.34, 0.32) were used to develop a fluorescence quenched sensing system for hemin determination. There is a good linear relationship between (F0-F)/F0 and concentration of hemin in the range of 0.1-0.95 µM with a detection limit of 0.043 µM, and the quenching mechanism was considered to be caused by inner filter effect (IFE). Moreover, it has been successfully used for hemin detection in serum and also for visual determination, which indicating great potential in applications of disease diagnoses and trace identification.


Assuntos
Pontos Quânticos , Hemina , Polímeros , Corantes Fluorescentes , Espectrometria de Fluorescência/métodos , Carbono
13.
Dalton Trans ; 53(6): 2534-2540, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38234156

RESUMO

Designing photocatalysts with efficient charge separation and electron transport capabilities to achieve efficient visible-driven hydrogen production remains a challenge. Herein, 2D-2D conductive metal-organic framework/g-C3N4 heterojunctions were successfully prepared by an in situ assembly. Compared to pristine g-C3N4, the ratio-optimized Ni-CAT-1/g-C3N4 exhibits approximately 3.6 times higher visible-light H2 production activity, reaching 14 mmol g-1. Through investigations using time-resolved photoluminescence, surface photovoltage, and wavelength-dependent photocurrent action spectroscopies, it is determined that the improved photocatalytic performance is attributed to enhanced charge transfer and separation, specifically the efficient transfer of excited high-energy-level electrons from g-C3N4 to Ni-CAT in the heterojunctions. Furthermore, the high electrical conductivity of Ni-CAT enables rapid electron transport, contributing to the overall enhanced performance. This work provides a feasible strategy to construct efficient dimension-matched g-C3N4-based heterojunction photocatalysts with high-efficiency charge separation for solar-driven H2 production.

14.
Metab Eng ; 82: 29-40, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224832

RESUMO

Yarrowia lipolytica is widely used in biotechnology to produce recombinant proteins, food ingredients and diverse natural products. However, unstable expression of plasmids, difficult and time-consuming integration of single and low-copy-number plasmids hampers the construction of efficient production pathways and application to industrial production. Here, by exploiting sequence diversity in the long terminal repeats (LTRs) of retrotransposons and ribosomal DNA (rDNA) sequences, a set of vectors and methods that can recycle multiple and high-copy-number plasmids was developed that can achieve stable integration of long-pathway genes in Y. lipolytica. By combining these sequences, amino acids and antibiotic tags with the Cre-LoxP system, a series of multi-copy site integration recyclable vectors were constructed and assessed using the green fluorescent protein (HrGFP) reporter system. Furthermore, by combining the consensus sequence with the vector backbone of a rapidly degrading selective marker and a weak promoter, multiple integrated high-copy-number vectors were obtained and high levels of stable HrGFP expression were achieved. To validate the universality of the tools, simple integration of essential biosynthesis modules was explored, and 7.3 g/L of L-ergothioneine and 8.3 g/L of (2S)-naringenin were achieved in a 5 L fermenter, the highest titres reported to date for Y. lipolytica. These novel multi-copy genome integration strategies provide convenient and effective tools for further metabolic engineering of Y. lipolytica.


Assuntos
Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Plasmídeos/genética , Engenharia Metabólica , Biotecnologia , Proteínas Recombinantes/genética
15.
Eur J Dent Educ ; 28(2): 461-470, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37929773

RESUMO

INTRODUCTION: The rise of virtual simulation technology and dental simulators has created a new pedagogical approach for undergraduate medical education. The purpose of this study is to evaluate the effect of virtual simulation (VS) technology on improving the students' comprehensive abilities in periodontal probing teaching in pre-practicum periodontology, such as increasing the accuracy of probing, tactile perception and performance on force control. MATERIALS AND METHODS: Twenty students were randomly selected among the fourth-year students and equally divided into VS technology teaching group (VS group) and traditional teaching group (TT group) by drawing half lots. One day later, students were required to probe the periodontal pathology model. The consistency rate between PD measurements and PD reference values, time consumption and final exam scores were recorded and statistically analysed using an unpaired Student's t test and p < .05 was considered statistical significance. Finally, questionnaires relating to teaching methods evaluation and the fidelity of the digital VS training system were distributed to students and teachers. RESULTS: VS group had a significantly higher consistency rate (72.976 ± 6.811%) than TT group (64.107 ± 4.988%, p = .004). To specify, the difference of consistency rates between the two groups in posterior teeth was larger than anterior teeth. Similarly, a larger difference was also found in proximal surfaces compared with buccal-lingual surfaces. As the pocket depth increased, the difference between the two groups increased too. These results indicated that VS is more efficient in complicated parts of periodontal probing teaching. In addition, students in VS group spent less time and gained a higher score than TT group (p < .05). The overall satisfaction rating in VS group was significantly higher than TT group. Lastly, teachers gave significant lower scores than students concerning the fidelity of VS system. CONCLUSION: Although there are much to improve, VS technology has obvious advantages in periodontal probing teaching in pre-practicum periodontology.


Assuntos
Educação em Odontologia , Estudantes , Humanos , Educação em Odontologia/métodos , Periodontia/educação , Simulação por Computador , Tecnologia , Ensino
16.
Front Microbiol ; 14: 1267447, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075898

RESUMO

The flavor of cigar tobacco leaf determines the quality of finished cigar tobacco, and the enhancement of flavor generally relies on microbial fermentation. In this paper, the correlation between the dominant microorganisms and the main flavor substances of cigar tobacco leaves during fermentation and the correlation between the two were investigated to reveal the correlation between microorganisms and flavor and the metabolic pathways of microorganisms affecting the flavor substances. During the fermentation process, the main flavors of cigar tobacco leaves were sweet, light and grassy, with hexanal, 2,6-dimethylpyridine, nonanal, phenylacetaldehyde, naphthalene, and methyl benzoate as the main constituents, and the key microorganisms Haloferax mediterranei, Haloterrigena limicola, Candidatus Thorarchaeota archaeon SMTZ-45, the genera Methyloversatilis, Sphingomonas, Thauera, Pseudomonas, Penicillium, and Aspergillus. Correlation analysis revealed that fungi were negatively correlated with the main aroma and inhibited the main flavor substances, while bacteria were positively correlated with Benzoic acid, methyl ester in the main flavor substances, which was conducive to the accumulation of green aroma. Functional analysis revealed that the dominant bacterial population was producing aroma by metabolizing glycoside hydrolases and glycosyltransferases, performing amino acid metabolism, carbohydrate metabolism and film transport metabolism. The present study showed that the bacterial and fungal dominant microorganisms during the fermentation of cigar tobacco were influencing the production and degradation of the main flavor substances through the enzyme metabolism by the occurrence of the Merad reaction.

17.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069281

RESUMO

Salinity stands as a significant environmental stressor, severely impacting crop productivity. Plants exposed to salt stress undergo physiological alterations that influence their growth and development. Meanwhile, plants have also evolved mechanisms to endure the detrimental effects of salinity-induced salt stress. Within plants, Calcineurin B-like (CBL) proteins act as vital Ca2+ sensors, binding to Ca2+ and subsequently transmitting signals to downstream response pathways. CBLs engage with CBL-interacting protein kinases (CIPKs), forming complexes that regulate a multitude of plant growth and developmental processes, notably ion homeostasis in response to salinity conditions. This review introduces the repercussions of salt stress, including osmotic stress, diminished photosynthesis, and oxidative damage. It also explores how CBLs modulate the response to salt stress in plants, outlining the functions of the CBL-CIPK modules involved. Comprehending the mechanisms through which CBL proteins mediate salt tolerance can accelerate the development of cultivars resistant to salinity.


Assuntos
Calcineurina , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Calcineurina/metabolismo , Proteínas Quinases/metabolismo , Estresse Salino , Estresse Fisiológico , Proteínas de Ligação ao Cálcio/metabolismo
18.
Biometrika ; 110(4): 867-869, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37981957
19.
Cancer Imaging ; 23(1): 112, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978567

RESUMO

BACKGROUND: To predict the microvascular invasion (MVI) in patients with cHCC-ICC. METHODS: A retrospective analysis was conducted on 119 patients who underwent CT enhancement scanning (from September 2006 to August 2022). They were divided into MVI-positive and MVI-negative groups. RESULTS: The proportion of patients with CEA elevation was higher in the MVI-positive group than in the MVI-negative group, with a statistically significant difference (P = 0.02). The MVI-positive group had a higher rate of peritumoral enhancement in the arterial phase (P = 0.01) whereas the MVI-negative group had more oval and lobulated masses (P = 0.04). According to the multivariate analysis, the increase in CEA (OR = 10.15, 95% CI: 1.11, 92.48, p = 0.04), hepatic capsular withdrawal (OR = 4.55, 95% CI: 1.44, 14.34, p = 0.01) and peritumoral enhancement (OR = 6.34, 95% CI: 2.18, 18.40, p < 0.01) are independent risk factors for predicting MVI. When these three imaging signs are combined, the specificity of MVI prediction was 70.59% (series connection), and the sensitivity was 100% (parallel connection). CONCLUSIONS: Our multivariate analysis found that CEA elevation, liver capsule depression, and arterial phase peritumoral enhancement were independent risk factors for predicting MVI in cHCC-ICC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/irrigação sanguínea , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/irrigação sanguínea , Estudos Retrospectivos , Microvasos/diagnóstico por imagem , Invasividade Neoplásica , Tomografia Computadorizada por Raios X
20.
Cancer ; 129(19): 2999-3009, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37449788

RESUMO

BACKGROUND: The role of carbohydrate antigen 19-9 (CA 19-9) in response assessment among patients with intrahepatic cholangiocarcinoma (iCCA) remains unknown. The authors studied the association of the CA 19-9 response (defined as a reduction >50% from baseline) with the radiologic response and the outcome in patients with unresectable iCCA. METHODS: A prospective cohort of 422 patients who were initially diagnosed with unresectable iCCA, had baseline CA 19-9 levels ≥100 U/mL, and received treatment with systemic therapies at the authors' institution between January 2017 and December 2021 were enrolled in this study. The radiologic response was assessed using the Response Evaluation Criteria in Solid Tumors version 1.1. A landmark assessment of the CA 19-9 response and the radiologic response was performed. The associations between CA 19-9 response and imaging response, progression-free survival (PFS), and overall survival (OS) were analyzed. RESULTS: Two hundred sixty-seven patients (63.3%) had a CA 19-9 response. A CA 19-9 response was observed in 123 of 132 (93.2%) radiologic responders and in 144 of 290 (49.7%) radiologic nonresponders (p < .001). CA 19-9 responders outperformed nonresponders in median PFS (10.6 vs. 3.6 months; hazard ratio [HR], 4.8 months; 95% confidence interval [CI], 3.8-6.0 months; p < .001) and OS (21.4 vs. 6.3 months; HR, 5.3 months; 95% CI, 4.2-6.7 months; p < .001). The common independent predictors of both OS and PFS included metastasis, CA 19-9 nonresponder status, and radiologic nonresponder status in multivariable analysis. CONCLUSIONS: CA 19-9 response is a valuable addition to assess tumor response and is associated with improved outcomes in patients with iCCA. Achieving a CA 19-9 response should be one of the therapeutic objectives of patients with iCCA after systemic therapies. PLAIN LANGUAGE SUMMARY: A decline in carbohydrate antigen 19-9 levels from elevated baseline levels should be one of the therapeutic aims of patients with intrahepatic cholangiocarcinoma who are managed with systemic therapies.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Estudos Prospectivos , Colangiocarcinoma/tratamento farmacológico , Ductos Biliares Intra-Hepáticos/diagnóstico por imagem , Ductos Biliares Intra-Hepáticos/patologia , Carboidratos/uso terapêutico , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...