Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(50): 46674-46681, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36570299

RESUMO

Metal-organic complexes are one of the most studied materials in the last few decades, which are fabricated from organic ligands and metal ions to form robust frameworks with porous structures. In this work, iron-1,4-benzenedicarboxylic-polyethylene glycol (Fe-BDC-PEG) with a porous structure was successfully constructed by an iron(III) benzene dicarboxylate and polyethylene glycol diacid. The drug-delivery properties of the resultant Fe-BDC-PEG were tested for the loading and release of the 5-fluorouracil compound. The maximal loading capacity of Fe-BDC-PEG for 5-fluorouracil was determined to be 348.22 mg/g. The drug release of 5-fluorouracil-loaded Fe-BDC-PEG after 7 days was 92.69% and reached a maximum of 97.52% after 10 days. The 7 day and acute oral toxicity of Fe-BDC-PEG in mice were studied. The results show that no reasonable change or mortality was observed upon administration of Fe-BDC-PEG complex in mice at 10 g/kg body weight. When the uptake of Fe-BDC-PEG particles in mice was continued for 7 consecutive days, the mortality, feed consumption, body weight, and daily activity were negligibly changed.

2.
ACS Omega ; 6(49): 33419-33427, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34926891

RESUMO

The porous metal-organic complexes are emerging as novel carriers for effective and safe delivery of drugs for cancer treatment, minimizing the side effect of drug overuse during cancer treatment. This study fabricated the Fe-BTC-PEG metal-organic complex from Fe ions, trimesic acid, and poly(ethylene glycol) as precursors using an ultrasonic-assisted method. The morphology and crystallinity of the resultant complex were observed by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. FTIR spectroscopy was employed to investigate the functional groups on the surface of the Fe-BTC-PEG complex. The result showed that the prepared Fe-BTC-PEG complex was in particle form with low crystallinity and diameter ranging from 100 to 200 nm. The obtained Fe-BTC-PEG complex exhibited a high loading capacity for the 5-fluorouracil (5-FU) anticancer drug with a maximal capacity of 364 mg/g. The releasing behavior of 5-fluorouracil from the 5-FU-loaded Fe-BTC-PEG complex was studied. Notably, the acute oral toxicity of the Fe-BTC-PEG metal-organic complex was also carried out to evaluate the safety of the material in practical application.

3.
J Hazard Mater ; 420: 126636, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34280722

RESUMO

The quest for finding an effective photocatalyst for environmental remediation and treatment strategies is attracting considerable attentions from scientists. In this study, a new hybrid material, Cu0.5Mg0.5Fe2O4-TiO2, was designed and fabricated using coprecipitation and sol-gel approaches for degrading organic dyes in wastewater. The prepared hybrid materials were fully characterized using scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The results revealed that the Cu0.5Mg0.5Fe2O4-TiO2 hybrid material was successfully synthesized with average particle sizes of 40.09 nm for TiO2 and 27.9 nm for Cu0.5Mg0.5Fe2O4. As the calculated bandgap energy of the hybrid material was approximately 2.86 eV, it could harvest photon energy in the visible region. Results indicate that the Cu0.5Mg0.5Fe2O4-TiO2 also had reasonable magnetic properties with a saturation magnetization value of 11.2 emu/g, which is a level of making easy separation from the solution by an external magnet. The resultant Cu0.5Mg0.5Fe2O4-TiO2 hybrid material revealed better photocatalytic performance for rhodamine B dye (consistent removal rate in the 13.96 × 10-3 min-1) compared with free-standing Cu0.5Mg0.5Fe2O4 and TiO2 materials. The recyclability and photocatalytic mechanism of Cu0.5Mg0.5Fe2O4-TiO2 are also well discussed.


Assuntos
Titânio , Águas Residuárias , Óxido de Alumínio , Catálise , Compostos Férricos , Óxido de Magnésio , Rodaminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...