Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 15: 1161678, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37273654

RESUMO

Introduction: Intracerebroventricularly (icv) injected streptozotocin (STZ) is a widely used model for sporadic Alzheimer's disease (sAD)-like pathology, marked by oxidative stress-mediated pathological progression. Intermittent theta burst stimulation (iTBS) is a noninvasive technique for brain activity stimulation with the ability to induce long-term potentiation-like plasticity and represents a promising treatment for several neurological diseases, including AD. The present study aims to investigate the effect of the iTBS protocol on the animal model of STZ-induced sAD-like pathology in the context of antioxidant, anti-inflammatory, and anti-amyloidogenic effects in the cortex, striatum, hippocampus, and cerebellum. Methods: Male Wistar rats were divided into four experimental groups: control (icv normal saline solution), STZ (icv STZ-3 mg/kg), STZ + iTBS (STZ rats subjected to iTBS protocol), and STZ + Placebo (STZ animals subjected to placebo iTBS noise artifact). Biochemical assays and immunofluorescence microscopy were used to evaluate functional and structural changes. Results: The icv STZ administration induces oxidative stress and attenuates antioxidative capacity in all examined brain regions. iTBS treatment significantly reduced oxidative and nitrosative stress parameters. Also, iTBS decreased Aß-1-42 and APP levels. The iTBS enhances antioxidative capacity reported as elevated activity of its enzymatic and non-enzymatic components. In addition, iTBS elevated BDNF expression and attenuated STZ-induced astrogliosis confirmed by decreased GFAP+/VIM+/C3+ cell reactivity in the hippocampus. Discussion: Our results provide experimental evidence for the beneficial effects of the applied iTBS protocol in attenuating oxidative stress, increasing antioxidant capacity and decreasing reactive astrogliosis in STZ-administrated rats.

2.
Gen Physiol Biophys ; 28 Spec No: 243-50, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19893107

RESUMO

IOxidative stress development in different brain structures and the influence of nitric oxide (NO) overproduction during sepsis was investigated using male Wistar rats. Rats were subjected to cecal ligation and puncture (CLP) or were sham-operated. To evaluate the source of NO production, 30 min before the operation septic and control animals were treated with single intraperitoneal doses of NO synthase (NOS) inhibitors: L-NAME and aminoguanidine (AG) (10, 30 or 90 mg/kg) and 7-nitroindazole (7-NI) (30 mg/kg). The concentration of GSH in the cortex, brain stem, cerebellum, striatum and hippocampus significantly decreased post CLP at both early and late stage sepsis. Lipid peroxidation also occurred in the cortex and cerebellum in late stage sepsis. Pre-treatment with a non-selective NOS inhibitor (L-NAME) and with selective inducible and neuronal NOS inhibitors (AG and 7-NI) revealed benefit effects on the GSH concentrations. Unexpectedly, NOS inhibition resulted in diverse effects on TBARS concentrations, suggesting the importance of specific quantities of NO in specific brain structures during sepsis.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ceco/cirurgia , Inibidores Enzimáticos/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Sepse/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Ligadura/efeitos adversos , Masculino , Óxido Nítrico/metabolismo , Punções/efeitos adversos , Ratos , Ratos Wistar , Sepse/enzimologia , Sepse/etiologia , Sepse/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...