Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 38(7): 110381, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35172154

RESUMO

Cortical expansion in primate brains relies on enlargement of germinal zones during a prolonged developmental period. Although most mammals have two cortical germinal zones, the ventricular zone (VZ) and subventricular zone (SVZ), gyrencephalic species display an additional germinal zone, the outer subventricular zone (oSVZ), which increases the number and diversity of neurons generated during corticogenesis. How the oSVZ emerged during evolution is poorly understood, but recent studies suggest a role for non-coding RNAs, which allow tight genetic program regulation during development. Here, using in vivo functional genetics, single-cell RNA sequencing, live imaging, and electrophysiology to assess progenitor and neuronal properties in mice, we identify two oSVZ-expressed microRNAs (miRNAs), miR-137 and miR-122, which regulate key cellular features of cortical expansion. miR-137 promotes basal progenitor self-replication and superficial layer neuron fate, whereas miR-122 decreases the pace of neuronal differentiation. These findings support a cell-type-specific role of miRNA-mediated gene expression in cortical expansion.


Assuntos
Diferenciação Celular/genética , MicroRNAs/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurônios/citologia , RNA não Traduzido/metabolismo , Animais , Proliferação de Células/genética , Reprogramação Celular/genética , Furões , Células HEK293 , Humanos , Ventrículos Laterais , Camundongos , MicroRNAs/genética , Mitose/genética , Neurogênese/genética , Neurônios/metabolismo , RNA não Traduzido/genética
2.
Cell Rep ; 34(4): 108644, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33503438

RESUMO

In the mammalian cerebral cortex, the developmental events governing allocation of different classes of inhibitory interneurons (INs) to distinct cortical layers are poorly understood. Here we report that the guidance receptor PlexinA4 (PLXNA4) is upregulated in serotonin receptor 3a-expressing (HTR3A+) cortical INs (hINs) as they invade the cortical plate, and that it regulates their laminar allocation to superficial cortical layers. We find that the PLXNA4 ligand Semaphorin3A (SEMA3A) acts as a chemorepulsive factor on hINs migrating into the nascent cortex and demonstrate that SEMA3A specifically controls their laminar positioning through PLXNA4. We identify deep-layer INs as a major source of SEMA3A in the developing cortex and demonstrate that targeted genetic deletion of Sema3a in these INs specifically affects laminar allocation of hINs. These data show that, in the neocortex, deep-layer INs control laminar allocation of hINs into superficial layers.


Assuntos
Córtex Cerebral/metabolismo , Interneurônios/metabolismo , Neocórtex/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Superfície Celular/metabolismo , Semaforina-3A/metabolismo , Animais , Camundongos
3.
Curr Opin Neurobiol ; 66: 224-232, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33513538

RESUMO

Semaphorins and Plexins constitute one of the largest family of guidance molecules and receptors involved in setting critical biological steps for central nervous system development. The role of these molecules in axonal development has been extensively characterized but Semaphorins and Plexins are also involved in a variety of other developmental processes, spanning from cell polarization to migration, laminar segregation and neuronal maturation. In this review, we aim to gather discoveries carried in the field of neurodevelopment over the last decade, during which Semaphorin/Plexin complexes have emerged as key regulators of neurogenesis, neural cell migration and adult gliogenesis. As well, we report mechanisms that brought a better understanding of axonal midline crossing.


Assuntos
Moléculas de Adesão Celular , Sistema Nervoso Central/fisiologia , Proteínas do Tecido Nervoso , Semaforinas , Humanos
4.
Elife ; 72018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29557780

RESUMO

Delineating the basic cellular components of cortical inhibitory circuits remains a fundamental issue in order to understand their specific contributions to microcircuit function. It is still unclear how current classifications of cortical interneuron subtypes relate to biological processes such as their developmental specification. Here we identified the developmental trajectory of neurogliaform cells (NGCs), the main effectors of a powerful inhibitory motif recruited by long-range connections. Using in vivo genetic lineage-tracing in mice, we report that NGCs originate from a specific pool of 5-HT3AR-expressing Hmx3+ cells located in the preoptic area (POA). Hmx3-derived 5-HT3AR+ cortical interneurons (INs) expressed the transcription factors PROX1, NR2F2, the marker reelin but not VIP and exhibited the molecular, morphological and electrophysiological profile of NGCs. Overall, these results indicate that NGCs are a distinct class of INs with a unique developmental trajectory and open the possibility to study their specific functional contribution to cortical inhibitory microcircuit motifs.


Assuntos
Linhagem da Célula , Córtex Cerebral/citologia , Interneurônios/citologia , Área Pré-Óptica/citologia , Potenciais de Ação/fisiologia , Animais , Córtex Cerebral/metabolismo , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Interneurônios/metabolismo , Interneurônios/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Área Pré-Óptica/metabolismo , Receptores 5-HT3 de Serotonina/genética , Receptores 5-HT3 de Serotonina/metabolismo , Proteína Reelina , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Nat Commun ; 8: 14219, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-28134272

RESUMO

Cortical GABAergic interneurons constitute a highly diverse population of inhibitory neurons that are key regulators of cortical microcircuit function. An important and heterogeneous group of cortical interneurons specifically expresses the serotonin receptor 3A (5-HT3AR) but how this diversity emerges during development is poorly understood. Here we use single-cell transcriptomics to identify gene expression patterns operating in Htr3a-GFP+ interneurons during early steps of cortical circuit assembly. We identify three main molecular types of Htr3a-GFP+ interneurons, each displaying distinct developmental dynamics of gene expression. The transcription factor Meis2 is specifically enriched in a type of Htr3a-GFP+ interneurons largely confined to the cortical white matter. These MEIS2-expressing interneurons appear to originate from a restricted region located at the embryonic pallial-subpallial boundary. Overall, this study identifies MEIS2 as a subclass-specific marker for 5-HT3AR-containing interstitial interneurons and demonstrates that the transcriptional and anatomical parcellation of cortical interneurons is developmentally coupled.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Neurônios GABAérgicos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/fisiologia , Interneurônios/fisiologia , Animais , Biomarcadores , Fator II de Transcrição COUP/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/citologia , Embrião de Mamíferos , Proteínas da Matriz Extracelular/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microfluídica/métodos , Rede Nervosa/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/metabolismo , Receptores 5-HT3 de Serotonina/metabolismo , Proteína Reelina , Análise de Sequência de RNA/métodos , Serina Endopeptidases/metabolismo , Análise de Célula Única/métodos
6.
Nat Commun ; 5: 5524, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25409778

RESUMO

Neuronal excitability has been shown to control the migration and cortical integration of reelin-expressing cortical interneurons (INs) arising from the caudal ganglionic eminence (CGE), supporting the possibility that neurotransmitters could regulate this process. Here we show that the ionotropic serotonin receptor 3A (5-HT(3A)R) is specifically expressed in CGE-derived migrating interneurons and upregulated while they invade the developing cortex. Functional investigations using calcium imaging, electrophysiological recordings and migration assays indicate that CGE-derived INs increase their response to 5-HT(3A)R activation during the late phase of cortical plate invasion. Using genetic loss-of-function approaches and in vivo grafts, we further demonstrate that the 5-HT(3A)R is cell autonomously required for the migration and proper positioning of reelin-expressing CGE-derived INs in the neocortex. Our findings reveal a requirement for a serotonin receptor in controlling the migration and laminar positioning of a specific subtype of cortical IN.


Assuntos
Movimento Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Interneurônios/metabolismo , Neocórtex/metabolismo , Receptores 5-HT3 de Serotonina/genética , Animais , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Camundongos , Neocórtex/embriologia , Proteínas do Tecido Nervoso/metabolismo , Proteína Reelina , Serina Endopeptidases/metabolismo
7.
Development ; 141(17): 3370-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25078650

RESUMO

The formation of a laminar structure such as the mammalian neocortex relies on the coordinated migration of different subtypes of excitatory pyramidal neurons in specific layers. Cyclin-dependent kinase 5 (Cdk5) is a master regulator of pyramidal neuron migration. Recently, we have shown that Cdk5 binds to the serotonin 6 receptor (5-HT6R), a G protein-coupled receptor (GPCR). Here, we investigated the role of 5-HT6R in the positioning and migration of pyramidal neurons during mouse corticogenesis. We report that constitutive expression of 5-HT6R controls pyramidal neuron migration through an agonist-independent mechanism that requires Cdk5 activity. These data provide the first in vivo evidence of a role for constitutive activity at a GPCR in neocortical radial migration.


Assuntos
Movimento Celular , Córtex Cerebral/citologia , Quinase 5 Dependente de Ciclina/metabolismo , Neurogênese , Neurônios/citologia , Neurônios/metabolismo , Receptores de Serotonina/metabolismo , Animais , Córtex Cerebral/metabolismo , Regulação para Baixo , Feminino , Células HEK293 , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Células Piramidais/citologia , Células Piramidais/metabolismo , Receptores de Serotonina/genética , Especificidade por Substrato
8.
Neuron ; 77(3): 472-84, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23395374

RESUMO

Major outputs of the neocortex are conveyed by corticothalamic axons (CTAs), which form reciprocal connections with thalamocortical axons, and corticosubcerebral axons (CSAs) headed to more caudal parts of the nervous system. Previous findings establish that transcriptional programs define cortical neuron identity and suggest that CTAs and thalamic axons may guide each other, but the mechanisms governing CTA versus CSA pathfinding remain elusive. Here, we show that thalamocortical axons are required to guide pioneer CTAs away from a default CSA-like trajectory. This process relies on a hold in the progression of cortical axons, or waiting period, during which thalamic projections navigate toward cortical axons. At the molecular level, Sema3E/PlexinD1 signaling in pioneer cortical neurons mediates a "waiting signal" required to orchestrate the mandatory meeting with reciprocal thalamic axons. Our study reveals that temporal control of axonal progression contributes to spatial pathfinding of cortical projections and opens perspectives on brain wiring.


Assuntos
Córtex Cerebral/fisiologia , Vias Neurais/fisiologia , Tálamo/fisiologia , Fatores Etários , Animais , Axônios/fisiologia , Padronização Corporal/genética , Calbindina 2 , Córtex Cerebral/citologia , Contactina 2/metabolismo , Proteínas do Citoesqueleto , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento/genética , Glicoproteínas/genética , Proteínas de Homeodomínio/genética , Peptídeos e Proteínas de Sinalização Intracelular , Complexo Antígeno L1 Leucocitário/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Fatores do Domínio POU/genética , Proteínas Repressoras/metabolismo , Proteína G de Ligação ao Cálcio S100/metabolismo , Semaforinas , Proteínas com Domínio T , Tálamo/citologia , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteína Wnt3A/genética , Proteínas tau/genética
9.
Dev Neurobiol ; 73(9): 647-72, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23420573

RESUMO

The corpus callosum (CC) plays a crucial role in interhemispheric communication. It has been shown that CC formation relies on the guidepost cells located in the midline region that include glutamatergic and GABAergic neurons as well as glial cells. However, the origin of these guidepost GABAergic neurons and their precise function in callosal axon pathfinding remain to be investigated. Here, we show that two distinct GABAergic neuronal subpopulations converge toward the midline prior to the arrival of callosal axons. Using in vivo and ex vivo fate mapping we show that CC GABAergic neurons originate in the caudal and medial ganglionic eminences (CGE and MGE) but not in the lateral ganglionic eminence (LGE). Time lapse imaging on organotypic slices and in vivo analyses further revealed that CC GABAergic neurons contribute to the normal navigation of callosal axons. The use of Nkx2.1 knockout (KO) mice confirmed a role of these neurons in the maintenance of proper behavior of callosal axons while growing through the CC. Indeed, using in vitro transplantation assays, we demonstrated that both MGE- and CGE-derived GABAergic neurons exert an attractive activity on callosal axons. Furthermore, by combining a sensitive RT-PCR technique with in situ hybridization, we demonstrate that CC neurons express multiple short and long range guidance cues. This study strongly suggests that MGE- and CGE-derived interneurons may guide CC axons by multiple guidance mechanisms and signaling pathways.


Assuntos
Axônios/fisiologia , Movimento Celular/fisiologia , Corpo Caloso/embriologia , Neurônios GABAérgicos/citologia , Animais , Corpo Caloso/ultraestrutura , Feminino , Neurônios GABAérgicos/ultraestrutura , Técnicas In Vitro , Interneurônios/citologia , Masculino , Camundongos , Camundongos Knockout , Neurogênese/fisiologia , Proteínas Nucleares/genética , Telencéfalo/citologia , Telencéfalo/embriologia , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/genética
10.
PLoS Genet ; 8(3): e1002606, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22479201

RESUMO

The corpus callosum (CC) is the major commissure that bridges the cerebral hemispheres. Agenesis of the CC is associated with human ciliopathies, but the origin of this default is unclear. Regulatory Factor X3 (RFX3) is a transcription factor involved in the control of ciliogenesis, and Rfx3-deficient mice show several hallmarks of ciliopathies including left-right asymmetry defects and hydrocephalus. Here we show that Rfx3-deficient mice suffer from CC agenesis associated with a marked disorganisation of guidepost neurons required for axon pathfinding across the midline. Using transplantation assays, we demonstrate that abnormalities of the mutant midline region are primarily responsible for the CC malformation. Conditional genetic inactivation shows that RFX3 is not required in guidepost cells for proper CC formation, but is required before E12.5 for proper patterning of the cortical septal boundary and hence accurate distribution of guidepost neurons at later stages. We observe focused but consistent ectopic expression of Fibroblast growth factor 8 (Fgf8) at the rostro commissural plate associated with a reduced ratio of GLIoma-associated oncogene family zinc finger 3 (GLI3) repressor to activator forms. We demonstrate on brain explant cultures that ectopic FGF8 reproduces the guidepost neuronal defects observed in Rfx3 mutants. This study unravels a crucial role of RFX3 during early brain development by indirectly regulating GLI3 activity, which leads to FGF8 upregulation and ultimately to disturbed distribution of guidepost neurons required for CC morphogenesis. Hence, the RFX3 mutant mouse model brings novel understandings of the mechanisms that underlie CC agenesis in ciliopathies.


Assuntos
Corpo Caloso , Proteínas de Ligação a DNA , Fator 8 de Crescimento de Fibroblasto , Fatores de Transcrição Kruppel-Like , Proteínas do Tecido Nervoso , Neurônios , Fatores de Transcrição , Animais , Axônios/metabolismo , Axônios/fisiologia , Corpo Caloso/crescimento & desenvolvimento , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Fator 8 de Crescimento de Fibroblasto/genética , Fator 8 de Crescimento de Fibroblasto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Mutantes , Morfogênese/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Fatores de Transcrição de Fator Regulador X , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Proteína Gli3 com Dedos de Zinco
11.
PLoS Biol ; 7(10): e1000230, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19859539

RESUMO

The corpus callosum (CC) is the main pathway responsible for interhemispheric communication. CC agenesis is associated with numerous human pathologies, suggesting that a range of developmental defects can result in abnormalities in this structure. Midline glial cells are known to play a role in CC development, but we here show that two transient populations of midline neurons also make major contributions to the formation of this commissure. We report that these two neuronal populations enter the CC midline prior to the arrival of callosal pioneer axons. Using a combination of mutant analysis and in vitro assays, we demonstrate that CC neurons are necessary for normal callosal axon navigation. They exert an attractive influence on callosal axons, in part via Semaphorin 3C and its receptor Neuropilin-1. By revealing a novel and essential role for these neuronal populations in the pathfinding of a major cerebral commissure, our study brings new perspectives to pathophysiological mechanisms altering CC formation.


Assuntos
Axônios/metabolismo , Corpo Caloso/embriologia , Neurônios/metabolismo , Semaforinas/metabolismo , Síndrome Acrocalosal/metabolismo , Síndrome Acrocalosal/patologia , Animais , Axônios/patologia , Linhagem Celular , Movimento Celular , Técnicas de Cocultura , Corpo Caloso/citologia , Corpo Caloso/metabolismo , Humanos , Camundongos , Vias Neurais/citologia , Vias Neurais/embriologia , Neurônios/citologia , Neuropilina-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...