Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 2883, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190592

RESUMO

We report the development of a large scale process for heat inactivation of clinical COVID-19 samples prior to laboratory processing for detection of SARS-CoV-2 by RT-qPCR. With more than 266 million confirmed cases, over 5.26 million deaths already recorded at the time of writing, COVID-19 continues to spread in many parts of the world. Consequently, mass testing for SARS-CoV-2 will remain at the forefront of the COVID-19 response and prevention for the near future. Due to biosafety considerations the standard testing process requires a significant amount of manual handling of patient samples within calibrated microbiological safety cabinets. This makes the process expensive, effects operator ergonomics and restricts testing to higher containment level laboratories. We have successfully modified the process by using industrial catering ovens for bulk heat inactivation of oropharyngeal/nasopharyngeal swab samples within their secondary containment packaging before processing in the lab to enable all subsequent activities to be performed in the open laboratory. As part of a validation process, we tested greater than 1200 clinical COVID-19 samples and showed less than 1 Cq loss in RT-qPCR test sensitivity. We also demonstrate the bulk heat inactivation protocol inactivates a murine surrogate of human SARS-CoV-2. Using bulk heat inactivation, the assay is no longer reliant on containment level 2 facilities and practices, which reduces cost, improves operator safety and ergonomics and makes the process scalable. In addition, heating as the sole method of virus inactivation is ideally suited to streamlined and more rapid workflows such as 'direct to PCR' assays that do not involve RNA extraction or chemical neutralisation methods.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Contenção de Riscos Biológicos/métodos , Temperatura Alta , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2/genética , Manejo de Espécimes/métodos , Inativação de Vírus , Animais , COVID-19/virologia , Linhagem Celular , Humanos , Camundongos , Vírus da Hepatite Murina/genética , RNA Viral/genética , RNA Viral/isolamento & purificação , Sensibilidade e Especificidade
2.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35046033

RESUMO

The ∼20,000 cells of the suprachiasmatic nucleus (SCN), the master circadian clock of the mammalian brain, coordinate subordinate cellular clocks across the organism, driving adaptive daily rhythms of physiology and behavior. The canonical model for SCN timekeeping pivots around transcriptional/translational feedback loops (TTFL) whereby PERIOD (PER) and CRYPTOCHROME (CRY) clock proteins associate and translocate to the nucleus to inhibit their own expression. The fundamental individual and interactive behaviors of PER and CRY in the SCN cellular environment and the mechanisms that regulate them are poorly understood. We therefore used confocal imaging to explore the behavior of endogenous PER2 in the SCN of PER2::Venus reporter mice, transduced with viral vectors expressing various forms of CRY1 and CRY2. In contrast to nuclear localization in wild-type SCN, in the absence of CRY proteins, PER2 was predominantly cytoplasmic and more mobile, as measured by fluorescence recovery after photobleaching. Virally expressed CRY1 or CRY2 relocalized PER2 to the nucleus, initiated SCN circadian rhythms, and determined their period. We used translational switching to control CRY1 cellular abundance and found that low levels of CRY1 resulted in minimal relocalization of PER2, but yet, remarkably, were sufficient to initiate and maintain circadian rhythmicity. Importantly, the C-terminal tail was necessary for CRY1 to localize PER2 to the nucleus and to initiate SCN rhythms. In CRY1-null SCN, CRY1Δtail opposed PER2 nuclear localization and correspondingly shortened SCN period. Through manipulation of CRY proteins, we have obtained insights into the spatiotemporal behaviors of PER and CRY sitting at the heart of the TTFL molecular mechanism.


Assuntos
Ritmo Circadiano , Criptocromos/metabolismo , Proteínas Circadianas Period/metabolismo , Neurônios do Núcleo Supraquiasmático/metabolismo , Animais , Ritmo Circadiano/genética , Imunofluorescência , Regulação da Expressão Gênica , Camundongos , Proteínas Circadianas Period/genética , Transporte Proteico , Imagem com Lapso de Tempo
3.
Sci Rep ; 5: 12444, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26207613

RESUMO

Intracellular delivery of biologically active proteins remains a formidable challenge in biomedical research. Here we show that biomedically relevant enzymes can be delivered into cells using a new DNA transfection reagent, lipofectamine 3000, allowing assessment of their intracellular functions. We also show that the J774.2 macrophage cell line exhibits unusual intracellular uptake of structurally and functionally distinct enzymes providing a convenient, reagent-free approach for evaluation of intracellular activities of enzymes.


Assuntos
Células Epiteliais/metabolismo , Lipossomos/farmacologia , Macrófagos/metabolismo , Neurônios/metabolismo , Transfecção/métodos , Amilorida/farmacologia , Contagem de Células , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dextranos/química , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/química , Expressão Gênica , Genes Reporter , Humanos , Lipossomos/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Especificidade de Órgãos , Inibidores da Síntese de Proteínas/química , Inibidores da Síntese de Proteínas/farmacologia , Proteínas Inativadoras de Ribossomos Tipo 1/química , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Saporinas , Proteína Vermelha Fluorescente
4.
J Neurosci ; 35(15): 6179-94, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25878289

RESUMO

Botulinum neurotoxin type A (BoNT/A) is a highly potent neurotoxin that elicits flaccid paralysis by enzymatic cleavage of the exocytic machinery component SNAP25 in motor nerve terminals. However, recent evidence suggests that the neurotoxic activity of BoNT/A is not restricted to the periphery, but also reaches the CNS after retrograde axonal transport. Because BoNT/A is internalized in recycling synaptic vesicles, it is unclear which compartment facilitates this transport. Using live-cell confocal and single-molecule imaging of rat hippocampal neurons cultured in microfluidic devices, we show that the activity-dependent uptake of the binding domain of the BoNT/A heavy chain (BoNT/A-Hc) is followed by a delayed increase in retrograde axonal transport of BoNT/A-Hc carriers. Consistent with a role of presynaptic activity in initiating transport of the active toxin, activity-dependent uptake of BoNT/A in the terminal led to a significant increase in SNAP25 cleavage detected in the soma chamber compared with nonstimulated neurons. Surprisingly, most endocytosed BoNT/A-Hc was incorporated into LC3-positive autophagosomes generated in the nerve terminals, which then underwent retrograde transport to the cell soma, where they fused with lysosomes both in vitro and in vivo. Blocking autophagosome formation or acidification with wortmannin or bafilomycin A1, respectively, inhibited the activity-dependent retrograde trafficking of BoNT/A-Hc. Our data demonstrate that both the presynaptic formation of autophagosomes and the initiation of their retrograde trafficking are tightly regulated by presynaptic activity.


Assuntos
Autofagia/efeitos dos fármacos , Toxinas Botulínicas Tipo A/metabolismo , Hipocampo/citologia , Neurônios/citologia , Neurotoxinas/metabolismo , Androstadienos/farmacologia , Animais , Animais Recém-Nascidos , Autofagia/fisiologia , Transporte Axonal/efeitos dos fármacos , Transporte Axonal/fisiologia , Toxinas Botulínicas Tipo A/farmacologia , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Feminino , Técnicas In Vitro , Macrolídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Neurotoxinas/farmacologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Receptores de Fator de Crescimento Neural/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Wortmanina
5.
J Cell Biochem ; 115(12): 2047-54, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25043607

RESUMO

Transfection of DNA has been invaluable for biological sciences, yet the effects upon membrane homeostasis are far from negligible. Here, we demonstrate that Neuro2A cells transfected using Lipofectamine LTX with the fluorescently coupled Botulinum serotype A holoenzyme (EGFP-LcA) cDNA express this SNAP25 protease that can, once translated, escape the transfected host cytosol and become endocytosed into untransfected cells, without its innate binding and translocation domains. Fluorescent readouts revealed moderate transfection rates (30-50%) while immunoblotting revealed a surprisingly total enzymatic cleavage of SNAP25; the transgenic protein acted beyond the confines of its host cell. Using intracellular dyes, no important cytotoxic effects were observed from reagent treatment alone, which excluded the possibility of membrane ruptures, though noticeably, intracellular acidic organelles were redistributed towards the plasma membrane. This drastic, yet frequently unobserved, change in protein permeability and endosomal trafficking following reagent treatment highlights important concerns for all studies using transient transfection.


Assuntos
Membrana Celular/metabolismo , Transfecção , Animais , Toxinas Botulínicas Tipo A/biossíntese , Toxinas Botulínicas Tipo A/genética , Linhagem Celular , Endocitose , Expressão Gênica , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Lipídeos/farmacologia , Camundongos , Organelas , Transporte Proteico , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteína 25 Associada a Sinaptossoma/biossíntese , Proteína 25 Associada a Sinaptossoma/genética
6.
J Neurochem ; 129(5): 781-91, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24372287

RESUMO

Soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) are crucial for exocytosis, trafficking, and neurite outgrowth, where vesicular SNAREs are directed toward their partner target SNAREs: synaptosomal-associated protein of 25 kDa and syntaxin. SNARE proteins are normally membrane bound, but can be cleaved and released by botulinum neurotoxins. We found that botulinum proteases types C and D can easily be transduced into endocrine cells using DNA-transfection reagents. Following administration of the C and D proteases into normally refractory Neuro2A neuroblastoma cells, the SNARE proteins were cleaved with high efficiency within hours. Remarkably, botulinum protease exposures led to cytotoxicity evidenced by spectrophotometric assays and propidium iodide penetration into the nuclei. Direct delivery of SNARE fragments into the neuroblastoma cells reduced viability similar to botulinum proteases' application. We observed synergistic cytotoxic effects of the botulinum proteases, which may be explained by the release and interaction of soluble SNARE fragments. We show for the first time that previously observed cytotoxicity of botulinum neurotoxins/C in neurons could be achieved in cells of neuroendocrine origin with implications for medical uses of botulinum preparations. Ternary complex formation by synaptobrevin (green) and syntaxin/synaptosomal-associated protein of 25 kDa (red) is necessary for vesicle fusion, membrane trafficking, and cell homeostasis. Botulinum proteases cleave the three SNAREs proteins as indicated, resulting in a loss of cell viability. Lipofection reagents were used to deliver botulinum proteases or short SNARE peptides into neuroblastoma cells, revealing cytotoxic effects of SNARE fragments.


Assuntos
Antineoplásicos , Neoplasias Encefálicas/tratamento farmacológico , Neuroblastoma/tratamento farmacológico , Fragmentos de Peptídeos/farmacologia , Peptídeo Hidrolases/química , Proteínas SNARE/química , Animais , Western Blotting , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citometria de Fluxo , Camundongos , Microscopia Confocal , Neuroblastoma/patologia , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/química , Proteína 25 Associada a Sinaptossoma/química , Sintaxina 1/química , Transdução Genética , Transfecção , Proteína 2 Associada à Membrana da Vesícula/química
7.
Bioconjug Chem ; 24(10): 1750-9, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24011174

RESUMO

Clostridial neurotoxins reversibly block neuronal communication for weeks and months. While these proteolytic neurotoxins hold great promise for clinical applications and the investigation of brain function, their paralytic activity at neuromuscular junctions is a stumbling block. To redirect the clostridial activity to neuronal populations other than motor neurons, we used a new self-assembling method to combine the botulinum type A protease with the tetanus binding domain, which natively targets central neurons. The two parts were produced separately and then assembled in a site-specific way using a newly introduced 'protein stapling' technology. Atomic force microscopy imaging revealed dumbbell shaped particles which measure ∼23 nm. The stapled chimera inhibited mechanical hypersensitivity in a rat model of inflammatory pain without causing either flaccid or spastic paralysis. Moreover, the synthetic clostridial molecule was able to block neuronal activity in a defined area of visual cortex. Overall, we provide the first evidence that the protein stapling technology allows assembly of distinct proteins yielding new biomedical properties.


Assuntos
Toxinas Botulínicas Tipo A/metabolismo , Encéfalo/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo , Toxina Tetânica/metabolismo , Animais , Toxinas Botulínicas Tipo A/administração & dosagem , Encéfalo/fisiologia , Células Cultivadas , Clostridium botulinum/metabolismo , Clostridium tetani/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Modelos Moleculares , Neurônios/citologia , Neurônios/efeitos dos fármacos , Ratos , Proteínas Recombinantes de Fusão/administração & dosagem , Toxina Tetânica/administração & dosagem
8.
J Neurochem ; 126(2): 223-33, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23638840

RESUMO

Precise cellular targeting of macromolecular cargos has important biotechnological and medical implications. Using a recently established 'protein stapling' method, we linked the proteolytic domain of botulinum neurotoxin type A (BoNT/A) to a selection of ligands to target neuroendocrine tumor cells. The botulinum proteolytic domain was chosen because of its well-known potency to block the release of neurotransmitters and hormones. Among nine tested stapled ligands, the epidermal growth factor was able to deliver the botulinum enzyme into pheochromocytoma PC12 and insulinoma Min6 cells; ciliary neurotrophic factor was effective on neuroblastoma SH-SY5Y and Neuro2A cells, whereas corticotropin-releasing hormone was active on pituitary AtT-20 cells and the two neuroblastoma cell lines. In neuronal cultures, the epidermal growth factor- and ciliary neurotrophic factor-directed botulinum enzyme targeted distinct subsets of neurons whereas the whole native neurotoxin targeted the cortical neurons indiscriminately. At nanomolar concentrations, the retargeted botulinum molecules were able to inhibit stimulated release of hormones from tested cell lines suggesting their application for treatments of neuroendocrine disorders.


Assuntos
Toxinas Botulínicas Tipo A/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Animais , Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas Tipo A/farmacologia , Linhagem Celular , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Neuroblastoma/patologia , Neurônios/efeitos dos fármacos , Neuropeptídeos/química , Norepinefrina/metabolismo , Cloreto de Potássio/farmacologia , Estrutura Terciária de Proteína/efeitos dos fármacos , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Trítio/metabolismo
9.
Bioconjug Chem ; 23(3): 479-84, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22299630

RESUMO

Combining proteins or their defined domains offers new enhanced functions. Conventionally, two proteins are either fused into a single polypeptide chain by recombinant means or chemically cross-linked. However, these strategies can have drawbacks such as poor expression (recombinant fusions) or aggregation and inactivation (chemical cross-linking), especially in the case of large multifunctional proteins. We developed a new linking method which allows site-oriented, noncovalent, yet irreversible stapling of modified proteins at neutral pH and ambient temperature. This method is based on two distinct polypeptide linkers which self-assemble in the presence of a specific peptide staple allowing on-demand and irreversible combination of protein domains. Here we show that linkers can either be expressed or be chemically conjugated to proteins of interest, depending on the source of the proteins. We also show that the peptide staple can be shortened to 24 amino acids still permitting an irreversible combination of functional proteins. The versatility of this modular technique is demonstrated by stapling a variety of proteins either in solution or to surfaces.


Assuntos
Peptídeos/química , Proteínas/química , Sequência de Aminoácidos , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Temperatura
10.
Toxins (Basel) ; 3(4): 345-55, 2011 04.
Artigo em Inglês | MEDLINE | ID: mdl-22069712

RESUMO

The therapeutic potential of botulinum neurotoxin type A (BoNT/A) has recently been widely recognized. BoNT/A acts to silence synaptic transmission via specific proteolytic cleavage of an essential neuronal protein, SNAP25. The advantages of BoNT/A-mediated synaptic silencing include very long duration, high potency and localized action. However, there is a fear of possible side-effects of BoNT/A due to its diffusible nature which may lead to neuromuscular blockade away from the injection site. We recently developed a "protein-stapling" technology which allows re-assembly of BoNT/A from two separate fragments. This technology allowed, for the first time, safe production of this popular neuronal silencing agent. Here we evaluated the re-assembled toxin in several CNS assays and assessed its systemic effects in an animal model. Our results show that the re-assembled toxin is potent in inhibiting CNS function at 1 nM concentration but surprisingly does not exhibit systemic toxicity after intraperitoneal injection even at 200 ng/kg dose. This shows that the re-assembled toxin represents a uniquely safe tool for neuroscience research and future medical applications.


Assuntos
Toxinas Botulínicas Tipo A/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Neurotoxinas/toxicidade , Animais , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/fisiopatologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Immunoblotting , Medições Luminescentes , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Transmissão Sináptica/efeitos dos fármacos , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/metabolismo
11.
Proc Natl Acad Sci U S A ; 107(42): 18197-201, 2010 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-20921391

RESUMO

Generation of supramolecular architectures through controlled linking of suitable building blocks can offer new perspectives to medicine and applied technologies. Current linking strategies often rely on chemical methods that have limitations and cannot take full advantage of the recombinant technologies. Here we used SNARE proteins, namely, syntaxin, SNAP25, and synaptobrevin, which form stable tetrahelical complexes that drive fusion of intracellular membranes, as versatile tags for irreversible linking of recombinant and synthetic functional units. We show that SNARE tagging allows stepwise production of a functional modular medicinal toxin, namely, botulinum neurotoxin type A, commonly known as BOTOX. This toxin consists of three structurally independent units: Receptor-binding domain (Rbd), Translocation domain (Td), and the Light chain (Lc), the last being a proteolytic enzyme. Fusing the receptor-binding domain with synaptobrevin SNARE motif allowed delivery of the active part of botulinum neurotoxin (Lc-Td), tagged with SNAP25, into neurons. Our data show that SNARE-tagged toxin was able to cleave its intraneuronal molecular target and to inhibit release of neurotransmitters. The reassembled toxin provides a safer alternative to existing botulinum neurotoxin and may offer wider use of this popular research and medical tool. Finally, SNARE tagging allowed the Rbd portion of the toxin to be used to deliver quantum dots and other fluorescent markers into neurons, showing versatility of this unique tagging and self-assembly technique. Together, these results demonstrate that the SNARE tetrahelical coiled-coil allows controlled linking of various building blocks into multifunctional assemblies.


Assuntos
Toxinas Botulínicas Tipo A/química , Proteínas R-SNARE/química , Proteínas SNARE/química , Toxinas Botulínicas Tipo A/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas SNARE/metabolismo
12.
J Nanobiotechnology ; 8: 9, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-20462407

RESUMO

BACKGROUND: Many techniques in molecular biology, clinical diagnostics and biotechnology rely on binary affinity tags. The existing tags are based on either small molecules (e.g., biotin/streptavidin or glutathione/GST) or peptide tags (FLAG, Myc, HA, Strep-tag and His-tag). Among these, the biotin-streptavidin system is most popular due to the nearly irreversible interaction of biotin with the tetrameric protein, streptavidin. The major drawback of the stable biotin-streptavidin system, however, is that neither of the two tags can be added to a protein of interest via recombinant means (except for the Strep-tag case) leading to the requirement for chemical coupling. RESULTS: Here we report a new immobilization system which utilizes two monomeric polypeptides which self-assemble to produce non-covalent yet nearly irreversible complex which is stable in strong detergents, chaotropic agents, as well as in acids and alkali. Our system is based on the core region of the tetra-helical bundle known as the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex. This irreversible protein attachment system (IPAS) uses either a shortened syntaxin helix and fused SNAP25-synaptobrevin or a fused syntaxin-synaptobrevin and SNAP25 allowing a two-component system suitable for recombinant protein tagging, capture and immobilization. We also show that IPAS is suitable for use with traditional beads and chromatography, planar surfaces and Biacore, gold nanoparticles and for protein-protein interaction in solution. CONCLUSIONS: IPAS offers an alternative to chemical cross-linking, streptavidin-biotin system and to traditional peptide affinity tags and can be used for a wide range of applications in nanotechnology and molecular sciences.

13.
Autophagy ; 1(1): 23-36, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16874023

RESUMO

Autophagy has been implicated in a range of disorders and hence is of major interest. However, imaging autophagy in real time has been hampered by lack of suitable markers. We have compared the potential of monodansylcadaverine, widely used as an autophagosomal marker, and the Atg8 homologue LC3, to follow autophagy by fluorescence microscopy whilst labelling late endosomes and lysosomes simultaneously using EGFP-CD63. Monodansylcadaverine labelled only acidic CD63-positive compartments in response to a range of autophagic inducers in various live or post-fixed cells, staining being identical in atg5(+/+) and atg5(-/-) MEFs in which autophagosome formation is disabled. Monodansylcadaverine staining was essentially indistinguishable from that of LysoTracker Red, LAMP-1 or LAMP-2. In contrast, 60-90% of EGFP-LC3-positive punctate organelles did not colocalise with LAMP-1/LAMP-2/CD63 and were monodansylcadaverine-negative while EGFP-LC3 puncta that did colocalise with LAMP-1/LAMP-2/CD63 were also monodansylcadaverine-positive. Hence monodansylcadaverine is no different from other markers of acidic compartments and it cannot be used to follow autophagosome formation. In contrast, fusion of mRFP-LC3-labelled autophagosomes with EGFP-CD63-positive endosomes and lysosomes and sequestration of dsRed-labelled mitochondria by EGFP-LC3- and EGFP-CD63-positive compartments could be visualized in real time. Moreover, transition of EGFP-LC3-I (45 kDa) to EGFP-LC3-II (43 kDa)-traced by immunoblotting and verified by [(3)H]ethanolamine labelling-revealed novel insights into the dynamics of autophagosome homeostasis, including the rapid activation of autophagy by the apoptotic inducer staurosporine prior to apoptosis proper. Use of fluorescent LC3 and a counter-fluorescent endosomal/lysosomal protein clearly allows the entire autophagic process to be followed by live cell imaging with high fidelity.


Assuntos
Autofagia/fisiologia , Endossomos/fisiologia , Lisossomos/fisiologia , Fusão de Membrana/fisiologia , Animais , Antígenos CD/imunologia , Autofagia/efeitos dos fármacos , Proteína 5 Relacionada à Autofagia , Cadaverina/análogos & derivados , Cadaverina/metabolismo , Linhagem Celular , Endossomos/efeitos dos fármacos , Endossomos/ultraestrutura , Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/ultraestrutura , Fusão de Membrana/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Mitocôndrias/ultraestrutura , Mutação , Nocodazol/farmacologia , Glicoproteínas da Membrana de Plaquetas/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Tamoxifeno/farmacologia , Tetraspanina 30
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...