Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 41(14): 3305-8, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27420521

RESUMO

Bandpass filters based on subwavelength dielectric gratings are grounded in physical principles that are totally distinct from their thin-film counterparts. Ease in fabrication, design scalability, material sparsity, and on-chip integration compatibility makes them a promising alternative especially for long-wavelength applications. Here we demonstrate the interesting attribute of resonant bandpass filters of high angular stability for fully conical light incidence. Fashioning an experimental bandpass filter with a subwavelength silicon grating on a quartz substrate, we show that fully conical incidence provides an angular full width at half-maximum linewidth of ∼9.5° compared to a linewidth of ∼0.1° for classical incidence. Slow angular variation of the central wavelength with full conical incidence arises via a corresponding slow angular variation of the resonant second diffraction orders driving the pertinent leaky modes. Moreover, full conical incidence maintains a profile with a single passband as opposed to the formation of two passbands characteristic of resonant subwavelength gratings under classical incidence. Our experimental results demonstrate excellent stability in angle, spectral profile, linewidth, and efficiency.

2.
Opt Lett ; 41(11): 2482-5, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27244394

RESUMO

There is immense scientific interest in the properties of resonant thin films embroidered with periodic nanoscale features. This device class possesses considerable innovation potential. Accordingly, we report unpolarized broadband reflectors enabled by a serial arrangement of a pair of polarized subwavelength gratings. Optimized with numerical methods, our elemental gratings consist of a partially etched crystalline-silicon film on a quartz substrate. The resulting reflectors exhibit extremely wide spectral reflection bands in one polarization. By arranging two such reflectors sequentially with orthogonal periodicities, there results an unpolarized spectral band that exceeds those of the individual polarized bands. In the experiments reported herein, we achieve zero-order reflectance exceeding 97% under unpolarized light incidence over a 500 nm wide wavelength band. This wideband represents a ∼44% fractional band in the near infrared. Moreover, the resonant unpolarized broadband accommodates an ultra-high reflection band spanning ∼85 nm and exceeding 99.9% in efficiency. The elemental polarization-sensitive reflectors based on one-dimensional (1D) resonant gratings have a simple design and robust performance, and are straightforward to fabricate. Hence, this technology is a promising alternative to traditional multilayer thin-film reflectors, especially at longer wavelengths of light where multilayer deposition may be infeasible or impractical.

3.
Opt Express ; 24(5): 4542-4551, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29092281

RESUMO

Applying numerical modeling coupled with experiments, we investigate the properties of wideband resonant reflectors under fully conical light incidence. We show that the wave vectors pertinent to resonant first-order diffraction under fully conical mounting vary less with incident angle than those associated with reflectors in classical mounting. Therefore, as the evanescent diffracted waves drive the leaky modes responsible for the resonance effects, fully-conical mounting imbues reflectors with larger angular tolerance than their classical counterparts. We quantify the angular-spectral performance of representative resonant wideband reflectors in conic and classic mounts by numerical calculations with improved spectra found for fully conic incidence. Moreover, these predictions are verified experimentally for wideband reflectors fashioned in crystalline and amorphous silicon in distinct spectral regions spanning the 1200-1600-nm and 1600-2400-nm spectral bands. These results will be useful in various applications demanding wideband reflectors that are efficient and materially sparse.

4.
Opt Lett ; 40(21): 5062-5, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26512519

RESUMO

Resonant periodic surfaces and films enable new functionalities with wide applicability in practical optical systems. Their material sparsity, ease of fabrication, and minimal interface count provide environmental and thermal stability and robustness in applications. Here, we report an experimental bandpass filter fashioned in a single patterned silicon layer on a quartz substrate. Its performance corresponds to bandpass filters requiring 15 traditional Si/SiO(2) thin-film layers. The feasibility of sparse narrowband high-efficiency bandpass filters with extremely wide, flat, and low sidebands is thereby demonstrated. This class of devices is designed with rigorous solutions of Maxwell's equations while engaging the physical principles of resonant waveguide gratings. An experimental filter presented exhibits a transmittance of ∼72%, bandwidth of ∼0.5 nm, and low sidebands spanning ∼100 nm. The proposed technology is integration-friendly and opens doors for further development in various disciplines and spectral regions where thin-film solutions are traditionally applied.

5.
Opt Express ; 23(18): 23428-35, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26368443

RESUMO

Optical devices incorporating resonant periodic layers constitute an emerging technological area. Recent advances include spectral filters, broadband mirrors, and polarizers. Here, we demonstrate concurrent spatial and spectral filtering as a new outstanding attribute of this device class. This functionality is enabled by a unique, near-complete, reflection state that is discrete in both angular and spectral domains and realized with carefully-crafted nanogratings operating in the non-subwavelength regime. We study the pathway and inter-modal interference effects inducing this intriguing reflection state. In a proof-of-concept experiment, we obtain angular and spectral bandwidths of ~4 mrad and ~1 nm, respectively. This filter concept can be used for focus-free spectral and spatial filtering in compact holographic and interferometric optical instruments.

6.
Opt Express ; 22(21): 25817-29, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25401615

RESUMO

We study theoretically modal properties and parametric dependence of guided-mode resonance bandpass filters operating in the mid- and near-infrared spectral domains. We investigate three different device architectures consisting of single, double, and triple layers based on all-transparent dielectric and semiconductor thin films. The three device classes show high-performance bandpass filter profiles with broad, flat low-transmission sidebands accommodating sharp transmission peaks with their efficiencies approaching 100% with appropriate blending of multiple guided modes. We present three modal coupling configurations forming complex mixtures of two or three distinct leaky modes coupling at different evanescent diffraction orders. These modal compositions produce various widths of sidebands ranging from ~30 nm to ~2100 nm and transmission peak-linewidths ranging from ~1 pm to ~10 nm. Our modal analysis demonstrates key attributes of subwavelength periodic thin-film structures in multiple-modal blending to achieve desired transmission spectra. The design principle is applicable to various optical elements such as high-power optical filters, low-noise label-free biochemical sensor templates, and high-density display pixels.


Assuntos
Filtração/instrumentação , Fenômenos Ópticos , Processamento de Sinais Assistido por Computador , Germânio/química , Dispositivos Ópticos , Selênio/química , Processamento de Sinais Assistido por Computador/instrumentação , Dióxido de Silício/química , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...