Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 10: 1205926, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37671196

RESUMO

Micronutrient malnutrition and suboptimal yields pose significant challenges in rainfed cropping systems worldwide. To address these issues, the implementation of climate-smart management strategies such as conservation agriculture (CA) and system intensification of millet cropping systems is crucial. In this study, we investigated the effects of different system intensification options, residue management, and contrasting tillage practices on pearl millet yield stability, biofortification, and the fatty acid profile of the pearl millet. ZT systems with intercropping of legumes (cluster bean, cowpea, and chickpea) significantly increased productivity (7-12.5%), micronutrient biofortification [Fe (12.5%), Zn (4.9-12.2%), Mn (3.1-6.7%), and Cu (8.3-16.7%)], protein content (2.2-9.9%), oil content (1.3%), and fatty acid profile of pearl millet grains compared to conventional tillage (CT)-based systems with sole cropping. The interactive effect of tillage, residue retention, and system intensification analyzed using GGE statistical analysis revealed that the best combination for achieving stable yields and micronutrient fortification was residue retention in both (wet and dry) seasons coupled with a ZT pearl millet + cowpea-mustard (both with and without barley intercropping) system. In conclusion, ZT combined with residue recycling and legume intercropping can be recommended as an effective approach to achieve stable yield levels and enhance the biofortification of pearl millet in rainfed agroecosystems of South Asia.

2.
Front Plant Sci ; 14: 1298946, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239227

RESUMO

The current study identified two new climate-resilient groundnut-based cropping systems (GBCSs), viz., groundnut-fenugreek cropping system (GFCS) and groundnut-marigold cropping system (GMCS), with appropriate system-mode bio-compost embedded nutrient management schedules (SBINMSs) for semi-arid South Asia. This 5-year field study revealed that the GMCS along with leaf compost (LC) + 50% recommended dose of fertilizers (RDF50) in wet-season crop (groundnut) and 100% RDF (RDF100) in winter-season crop (marigold) exhibited the highest system productivity (5.13-5.99 t/ha), system profits (US$ 1,767-2,688/ha), and soil fertility (available NPK). Among SBINMSs, the application of 5 t/ha leaf and cow dung mixture compost (LCMC) with RDF50 showed the highest increase (0.41%) in soil organic carbon (SOC) followed by LC at 5 t/ha with RDF50 and RDF100. Legume-legume rotation (GFCS) had significantly higher soil microbial biomass carbon (SMBC) and soil microbial biomass nitrogen (SMBN) than legume-non-legume rotations (groundnut-wheat cropping system (GWCS) and GMCS). Among SBINMSs, the highest SMBC (201 µg/g dry soil) and SMBN (27.9 µg/g dry soil) were obtained when LCMC+RDF50 was applied to groundnut. The SMBC : SMBN ratio was the highest in the GWCS. LC+RDF50 exhibited the highest SMBC : SOC ratio (51.6). The largest increase in soil enzymatic activities was observed under LCMC+RDF50. Overall, the GMCS with LC+RDF50 in the wet season and RDF100 in the winter season proved highly productive and remunerative with better soil bio-fertility. SBINMSs saved chemical fertilizers by ~25%' in addition to enhanced system productivity and system profits across GBCSs in semi-arid regions of South Asia. Future research needs to focus on studying the potential of diversified production systems on water and environmental footprints, carbon dynamics, and energy productivity under semi-arid ecologies.

3.
Sci Rep ; 7(1): 12539, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28970511

RESUMO

A large portion of the global wheat crop is milled to produce flour for use in the production of foods such as bread. Pressure to increase food supplies sustainably can be address directly by reducing post-harvest losses during processes such as flour milling. The recovery of flour in the milling of wheat is genetically determined but difficult to assess in wheat breeding due to the requirement for a large sample. Here we report the discovery that human selection for altered expression of putative cell adhesion proteins is associated with wheats that give high yields of flour on milling. Genes encoding fasciclin-like arabinogalactan proteins are expressed at low levels in high milling wheat genotypes at mid grain development. Thirty worldwide wheat genotypes were grouped into good and poor millers based flour yield obtained from laboratory scale milling of mature seeds. Differentially expressed genes were identified by comparing transcript profiles at 14 and 30 days post anthesis obtained from RNA-seq data of all the genotypes. Direct selection for genotypes with appropriate expression of these genes will greatly accelerate wheat breeding and ensure high recoveries of flour from wheat by resulting in grains that break up more easily on milling.


Assuntos
Moléculas de Adesão Celular Neuronais/genética , Farinha , Mucoproteínas/genética , Triticum/genética , Pão , Grão Comestível/genética , Regulação da Expressão Gênica de Plantas , Humanos , Proteínas de Plantas/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento
4.
PLoS One ; 11(10): e0164746, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27741295

RESUMO

Puroindoline (Pina and Pinb) genes control grain texture or hardness in wheat. Wild-type/soft alleles lead to softer grain while a mutation in one or both of these genes results in a hard grain. Variation in hardness in genotypes with identical Pin alleles (wild-type or mutant) is known but the molecular basis of this is not known. We now report the identification of wheat genotypes with hard grain texture and wild-type/soft Pin alleles indicating that hardness in wheat may be controlled by factors other than mutations in the coding region of the Pin genes. RNA-Seq analysis was used to determine the variation in the transcriptome of developing grains of thirty three diverse wheat genotypes including hard (mutant Pin) and soft (wild type) and those that were hard without having Pin mutations. This defined the role of pin gene expression and identified other candidate genes associated with hardness. Pina was not expressed in hard wheat with a mutation in the Pina gene. The ratio of Pina to Pinb expression was generally lower in the hard non mutant genotypes. Hardness may be associated with differences in Pin expression and other factors and is not simply associated with mutations in the PIN protein coding sequences.


Assuntos
Proteínas de Plantas/metabolismo , Triticum/genética , Alelos , Regulação da Expressão Gênica de Plantas , Genótipo , Dureza , Proteínas de Plantas/genética , RNA de Plantas/química , RNA de Plantas/isolamento & purificação , RNA de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Análise de Sequência de RNA , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...