Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Plant ; 16(8): 1269-1282, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37415334

RESUMO

Survival of living organisms is fully dependent on their maintenance of genome integrity, being permanently threatened by replication stress in proliferating cells. Although the plant DNA damage response (DDR) regulator SOG1 has been demonstrated to cope with replication defects, accumulating evidence points to other pathways functioning independent of SOG1. Here, we report the roles of the Arabidopsis E2FA and EF2B transcription factors, two well-characterized regulators of DNA replication, in plant response to replication stress. Through a combination of reverse genetics and chromatin immunoprecipitation approaches, we show that E2FA and E2FB share many target genes with SOG1, providing evidence for their involvement in the DDR. Analysis of double- and triple-mutant combinations revealed that E2FB, rather than E2FA, plays the most prominent role in sustaining plant growth in the presence of replication defects, either operating antagonistically or synergistically with SOG1. Conversely, SOG1 aids in overcoming the replication defects of E2FA/E2FB-deficient plants. Collectively, our data reveal a complex transcriptional network controlling the replication stress response in which E2Fs and SOG1 act as key regulatory factors.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Regulação da Expressão Gênica de Plantas/genética
2.
Plant Cell ; 33(8): 2662-2684, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34086963

RESUMO

The ataxia-telangiectasia mutated (ATM) and ATM and Rad3-related (ATR) kinases coordinate the DNA damage response. The roles described for Arabidopsis thaliana ATR and ATM are assumed to be conserved over other plant species, but molecular evidence is scarce. Here, we demonstrate that the functions of ATR and ATM are only partially conserved between Arabidopsis and maize (Zea mays). In both species, ATR and ATM play a key role in DNA repair and cell cycle checkpoint activation, but whereas Arabidopsis plants do not suffer from the absence of ATR under control growth conditions, maize mutant plants accumulate replication defects, likely due to their large genome size. Moreover, contrarily to Arabidopsis, maize ATM deficiency does not trigger meiotic defects, whereas the ATR kinase appears to be crucial for the maternal fertility. Strikingly, ATR is required to repress premature endocycle onset and cell death in the maize endosperm. Its absence results in a reduction of kernel size, protein and starch content, and a stochastic death of kernels, a process being counteracted by ATM. Additionally, while Arabidopsis atr atm double mutants are viable, no such mutants could be obtained for maize. Therefore, our data highlight that the mechanisms maintaining genome integrity may be more important for vegetative and reproductive development than previously anticipated.


Assuntos
Reparo do DNA/genética , Endosperma/genética , Proteínas de Plantas/genética , Zea mays/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Sistemas CRISPR-Cas , Morte Celular/genética , Quebras de DNA de Cadeia Dupla , Replicação do DNA/genética , Endosperma/citologia , Instabilidade Genômica , Mutação , Células Vegetais , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Sementes/citologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Zea mays/citologia , Zea mays/crescimento & desenvolvimento
3.
Plant J ; 106(5): 1197-1207, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33989439

RESUMO

Safeguarding of genome integrity is a key process in all living organisms. Due to their sessile lifestyle, plants are particularly exposed to all kinds of stress conditions that could induce DNA damage. However, very few genes involved in the maintenance of genome integrity are indispensable to plants' viability. One remarkable exception is the POLQ gene, which encodes DNA polymerase theta (Pol θ), a non-replicative polymerase involved in trans-lesion synthesis during DNA replication and double-strand break (DSB) repair. The Arabidopsis tebichi (teb) mutants, deficient in Pol θ, have been reported to display severe developmental defects, leading to the conclusion that Pol θ is required for normal plant development. However, this essential role of Pol θ in plants is challenged by contradictory reports regarding the phenotypic defects of teb mutants and the recent finding that rice (Oryza sativa) null mutants develop normally. Here we show that the phenotype of teb mutants is highly variable. Taking advantage of hypomorphic mutants for the replicative DNA polymerase epsilon, which display constitutive replicative stress, we show that Pol θ allows maintenance of meristem activity when DNA replication is partially compromised. Furthermore, we found that the phenotype of Pol θ mutants can be aggravated by modifying their growth conditions, suggesting that environmental conditions impact the basal level of replicative stress and providing evidence for a link between plants' responses to adverse conditions and mechanisms involved in the maintenance of genome integrity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , DNA Polimerase II/metabolismo , Reparo do DNA , Replicação do DNA , DNA de Plantas/genética , DNA Polimerase Dirigida por DNA/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Quebras de DNA de Cadeia Dupla , Dano ao DNA , DNA Polimerase II/genética , DNA Polimerase Dirigida por DNA/genética , Instabilidade Genômica , Genótipo , Meristema/genética , Meristema/fisiologia , Modelos Biológicos , Mutação , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Estresse Fisiológico , DNA Polimerase teta
5.
Front Plant Sci ; 10: 653, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31164899

RESUMO

Maintenance of genome integrity is a key issue for all living organisms. Cells are constantly exposed to DNA damage due to replication or transcription, cellular metabolic activities leading to the production of Reactive Oxygen Species (ROS) or even exposure to DNA damaging agents such as UV light. However, genomes remain extremely stable, thanks to the permanent repair of DNA lesions. One key mechanism contributing to genome stability is the DNA Damage Response (DDR) that activates DNA repair pathways, and in the case of proliferating cells, stops cell division until DNA repair is complete. The signaling mechanisms of the DDR are quite well conserved between organisms including in plants where they have been investigated into detail over the past 20 years. In this review we summarize the acquired knowledge and recent advances regarding the DDR control of cell cycle progression. Studying the plant DDR is particularly interesting because of their mode of development and lifestyle. Indeed, plants develop largely post-embryonically, and form new organs through the activity of meristems in which cells retain the ability to proliferate. In addition, they are sessile organisms that are permanently exposed to adverse conditions that could potentially induce DNA damage in all cell types including meristems. In the second part of the review we discuss the recent findings connecting the plant DDR to responses to biotic and abiotic stresses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...