Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Biol Eng Comput ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963467

RESUMO

Continuous blood pressure (BP) provides essential information for monitoring one's health condition. However, BP is currently monitored using uncomfortable cuff-based devices, which does not support continuous BP monitoring. This paper aims to introduce a blood pressure monitoring algorithm based on only photoplethysmography (PPG) signals using the deep neural network (DNN). The PPG signals are obtained from 125 unique subjects with 218 records and filtered using signal processing algorithms to reduce the effects of noise, such as baseline wandering, and motion artifacts. The proposed algorithm is based on pulse wave analysis of PPG signals, extracted various domain features from PPG signals, and mapped them to BP values. Four feature selection methods are applied and yielded four feature subsets. Therefore, an ensemble feature selection technique is proposed to obtain the optimal feature set based on major voting scores from four feature subsets. DNN models, along with the ensemble feature selection technique, outperformed in estimating the systolic blood pressure (SBP) and diastolic blood pressure (DBP) compared to previously reported approaches that rely only on the PPG signal. The coefficient of determination ( R 2 ) and mean absolute error (MAE) of the proposed algorithm are 0.962 and 2.480 mmHg, respectively, for SBP and 0.955 and 1.499 mmHg, respectively, for DBP. The proposed approach meets the Advancement of Medical Instrumentation standard for SBP and DBP estimations. Additionally, according to the British Hypertension Society standard, the results attained Grade A for both SBP and DBP estimations. It concludes that BP can be estimated more accurately using the optimal feature set and DNN models. The proposed algorithm has the potential ability to facilitate mobile healthcare devices to monitor continuous BP.

2.
Heliyon ; 10(6): e27779, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38533045

RESUMO

Background and objective: Hypertension is a potentially dangerous health condition that can be detected by measuring blood pressure (BP). Blood pressure monitoring and measurement are essential for preventing and treating cardiovascular diseases. Cuff-based devices, on the other hand, are uncomfortable and prevent continuous BP measurement. Methods: In this study, a new non-invasive and cuff-less method for estimating Systolic Blood Pressure (SBP), Mean Arterial Pressure (MAP), and Diastolic Blood Pressure (DBP) has been proposed using characteristic features of photoplethysmogram (PPG) signals and nonlinear regression algorithms. PPG signals were collected from 219 participants, which were then subjected to preprocessing and feature extraction steps. Analyzing PPG and its derivative signals, a total of 46 time, frequency, and time-frequency domain features were extracted. In addition, the age and gender of each subject were also included as features. Further, correlation-based feature selection (CFS) and Relief F feature selection (ReliefF) techniques were used to select the relevant features and reduce the possibility of over-fitting the models. Finally, support vector regression (SVR), K-nearest neighbour regression (KNR), decision tree regression (DTR), and random forest regression (RFR) were established to develop the BP estimation model. Regression models were trained and evaluated on all features as well as selected features. The best regression models for SBP, MAP, and DBP estimations were selected separately. Results: The SVR model, along with the ReliefF-based feature selection algorithm, outperforms other algorithms in estimating the SBP, MAP, and DBP with the mean absolute error of 2.49, 1.62 and 1.43 mmHg, respectively. The proposed method meets the Advancement of Medical Instrumentation standard for BP estimations. Based on the British Hypertension Society standard, the results also fall within Grade A for SBP, MAP, and DBP. Conclusion: The findings show that the method can be used to estimate blood pressure non-invasively, without using a cuff or calibration, and only by utilizing the PPG signal characteristic features.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...