Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(51): 36130-36143, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38090076

RESUMO

Here we synthesized Bi2WO6 (BWO) using both solid-state reaction (SBWO) and hydrothermal (HBWO-U and HBWO-S) methods. The orthorhombic Pca21 phase purity in all samples is confirmed from Rietveld refinement of X-ray diffraction data, Raman spectroscopy, and Fourier transform infrared spectroscopy. The HBWO-U and HBWO-S morphology revealed rectangular, spherical, and rod-like features with an average particle size of 55 nm in field emission scanning electron micrographs. A high-resolution transmission electron micrograph showed spherical-shaped particles in the HBWO-U sample with an average diameter of ∼10 nm. The diffuse reflectance-derived indirect electronic band gaps lie within the 2.79-3.23 eV range. The BWO electronic structure is successfully modeled by Hubbard interaction Ud and Up corrected Perdew-Burke-Ernzerhof generalized gradient approximation GGA-PBE+Ud+Up with van der Waals (vdW) force in effect. The optimized (Ud, Up) values are further justified by tuning the Hartree-Fock (HF) exact-exchange mixing parameter αHF from 25% in Heyd-Scuseria-Ernzerhof (HSE06) to 20% in the PBE-HF20% functional. Moreover, no inconsistencies were seen in the GGA-PBE+Ud+Up+vdW simulated crystallographic parameters, and the elastic tensor, phonon, and linear optical properties. Overall, the computationally cheap GGA-PBE+Ud+Up with vdW force may have successfully probed the physical properties of BWO.

2.
RSC Adv ; 13(21): 14291-14305, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37180022

RESUMO

Here we present a comprehensive density functional theory (DFT) based ab initio study of copper bismuth oxide CuBi2O4 (CBO) in combination with experimental observations. The CBO samples were prepared following both solid-state reaction (SCBO) and hydrothermal (HCBO) methods. The P4/ncc phase purity of the as-synthesized samples was corroborated by Rietveld refinement of the powdered X-ray diffraction measurements along with Generalized Gradient Approximation of Perdew-Burke-Ernzerhof (GGA-PBE) and the Hubbard interaction U corrected GGA-PBE+U relaxed crystallographic parameters. Scanning and field emission scanning electron micrographs confirmed the particle size of the SCBO and HCBO samples to be ∼250 and ∼60 nm respectively. The GGA-PBE and GGA-PBE+U derived Raman peaks are in better agreement with that of the experimentally observed ones when compared to local density approximation based results. The DFT derived phonon density of states conforms with the absorption bands in Fourier transform infrared spectra. Both structural and dynamic stability criteria of the CBO are confirmed by elastic tensor and density functional perturbation theory-based phonon band structure simulations respectively. The CBO band gap underestimation of GGA-PBE as compared to UV-vis diffuse reflectance derived 1.8 eV was eliminated by tuning the U and the Hartree-Fock exact-exchange mixing parameter αHF in GGA-PBE+U and Heyd-Scuseria-Ernzerhof (HSE06) hybrid functionals respectively. The HSE06 with αHF = 14% yields the optimum linear optical properties of CBO in terms of the dielectric function, absorption, and their derivatives as compared to that of GGA-PBE and GGA-PBE+U functionals. Our as-synthesized HCBO shows ∼70% photocatalytic efficiency in degrading methylene blue dye under 3 h optical illumination. This DFT-guided experimental approach to CBO may help to gain a better understanding of its functional properties.

3.
RSC Adv ; 13(8): 5576-5589, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36798614

RESUMO

Here we present a detailed ab initio study of two experimentally synthesized bismuth niobate BiNbO4 (BNO) polymorphs within the framework of density functional theory (DFT). We synthesized orthorhombic α-BNO and triclinic ß-BNO using a solid-state reaction technique. The underlying Pnna and P1̄ crystal symmetries along with their respective phase purity have been confirmed from Rietveld refinement of the powdered X-ray diffraction measurements in combination with generalized gradient approximation of Perdew-Burke-Ernzerhof (GGA-PBE) based DFT simulations. The scanning electron micrographs revealed average grain sizes to be 500 nm and 1 µm for α-BNO and ß-BNO respectively. The energy-dispersive X-ray spectroscopy identified the Bi, Nb, and O with proper stoichiometry. The phase purity of the as-synthesized samples was further confirmed by comparing the local density approximation (LDA) norm-conserving pseudo-potential based DFT-simulated Raman peaks with that of experimentally measured ones. The relevant bond vibrations detected in Fourier transform infrared spectroscopy were matched with GGA-PBE derived phonon density of states simulation for both polymorphs. The structural stability and the charge dynamics of the polymorphs were verified from elastic stress and born charge tensor simulations respectively. The dynamical stability of the α-BNO was confirmed from phonon band structure simulation using density functional perturbation theory with Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional. The electronic band gaps of 3.08 and 3.36 eV for α-BNO and ß-BNO measured from UV-Vis diffuse reflectance measurements were matched with the sophisticated HSE06 band structure simulation by adjusting the Hartree-Fock exchange parameter. Both GGA-PBE and HSE06 functional were used to simulate complex dielectric function and its derivatives with the help of Fermi's golden rule to define the optical properties in the linear regime. All these may have provided a rigorous theoretical analysis for the experimentally synthesized α-BNO and ß-BNO polymorphs.

4.
RSC Adv ; 12(32): 20583-20598, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35919162

RESUMO

With the goal of developing a Si-based anode for Mg-ion batteries (MIBs) that is both efficient and compatible with the current semiconductor industry, the current research utilized classical Molecular Dynamics (MD) simulation in investigating the intercalation of a Mg2+ ion under an external electric field (E-field) in a 2D bilayer silicene anode (BSA). First principles density functional theory calculations were used to validate the implemented EDIP potentials. Our simulation shows that there exists an optimum E-field value in the range of 0.2-0.4 V Å-1 for Mg2+ intercalation in BSA. To study the effect of the E-field on Mg2+ ions, an exhaustive spread of investigations was carried out under different boundary conditions, including calculations of mean square displacement (MSD), interaction energy, radial distribution function (RDF), and trajectory of ions. Our results show that the Mg2+ ions form a stable bond with Si in BSA. The effects of E-field direction and operating temperature were also investigated. In the X-Y plane in the 0°-45° range, 15° from the X-direction was found to be the optimum direction for intercalation. The results of this work also suggest that BSA does not undergo drastic structural changes during the charging cycles with the highest operating temperature being ∼300 K.

5.
ACS Omega ; 7(26): 22263-22278, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35811908

RESUMO

In this research, solar cell capacitance simulator-one-dimensional (SCAPS-1D) software was used to build and probe nontoxic Cs-based perovskite solar devices and investigate modulations of key material parameters on ultimate power conversion efficiency (PCE). The input material parameters of the absorber Cs-perovskite layer were incrementally changed, and with the various resulting combinations, 63,500 unique devices were formed and probed to produce device PCE. Versatile and well-established machine learning algorithms were thereafter utilized to train, test, and evaluate the output dataset with a focused goal to delineate and rank the input material parameters for their impact on ultimate device performance and PCE. The most impactful parameters were then tuned to showcase unique ranges that would ultimately lead to higher device PCE values. As a validation step, the predicted results were confirmed against SCAPS simulated results as well, highlighting high accuracy and low error metrics. Further optimization of intrinsic material parameters was conducted through modulation of absorber layer thickness, back contact metal, and bulk defect concentration, resulting in an improvement in the PCE of the device from 13.29 to 16.68%. Overall, the results from this investigation provide much-needed insight and guidance for researchers at large, and experimentalists in particular, toward fabricating commercially viable nontoxic inorganic perovskite alternatives for the burgeoning solar industry.

6.
ACS Appl Mater Interfaces ; 14(1): 502-516, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34962754

RESUMO

In this investigation, supervised machine learning (ML) was utilized to accurately predict the optimum bromine doping concentration in single-junction MASnI3-xBrx devices. Data-driven optimizations were carried out on 42 000 unique devices built utilizing a solar cell capacitance simulator (SCAPS). The devices were investigated through variations of bromine doping %, bandgap, electron affinity, series resistance, back-contact metal, and acceptor concentration─parameters that were specifically chosen because of their tunable nature and ability to be modified through facile experimental fabrication techniques of the device. Five different algorithms were utilized to explore feature engineering. The first step before bromine doping within the device included validation studies of a pure tin-based system, MASnI3: a power conversion efficiency (PCE) of 6.71% was achieved, having close congruence with experimental data. ML analyses for optimal bromine doping resulted in the discovery of two devices with bromine concentrations of 22.43% (Br22) and 25.63% (Br25), with the latter being a more fine-tuned value obtained through extra rigorous analysis. To understand the total and relative impact of each feature on power conversion efficiency (PCE), Br22 and Br25 were analyzed with a state-of-the-art algorithm, namely, the SHapley Additive exPlanations (SHAP) algorithm. Focusing on the two discovered devices, further device optimizations were carried out utilizing SCAPS. Modulations of absorber thickness, bulk and interfacial defect density, and choice of electron transport layer (ETL) and hole transport layer (HTL) materials were tried. Device stability was analyzed through carrier lifetime studies. Following these optimization steps, Br22 and Br25 demonstrated final high PCE values of 20.72 and 17.37%, respectively. The ML-assisted quantitative analysis of the current work provides significant confidence for optimal bromine-doped tin-based devices to be considered as viable and competitive nontoxic alternatives to traditional technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...