Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 95(6-1): 062209, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28709255

RESUMO

The response of a traveling pulse to a local external stimulus is considered numerically for a modified three-component Oregonator, which is a model system for the photosensitive Belousov-Zhabotinsky (BZ) reaction. The traveling pulse is traced and constantly stimulated, with the distance between the pulse and the stimulus being kept constant. We are interested in the minimal strength of the spatially localized stimulus in order to eliminate the pulse. The use of a stimulus of small width allows us to detect the point in the pulse most sensitive to the external stimulus, referred to as the "Achilles' heel" of the traveling pulse, at which minimal strength of stimulus causes a collapse of the pulse. Our findings are demonstrated experimentally as well with the photosensitive BZ reaction.

2.
Artigo em Inglês | MEDLINE | ID: mdl-26382479

RESUMO

Mode selection and bifurcation of a synchronized motion involving two symmetric self-propelled objects in a periodic one-dimensional domain were investigated numerically and experimentally by using camphor disks placed on an annular water channel. Newton's equation of motion for each camphor disk, whose driving force was the difference in surface tension, and a reaction-diffusion equation for camphor molecules on water were used in the numerical calculations. Among various dynamical behaviors found numerically, four kinds of synchronized motions (reversal oscillation, stop-and-move rotation, equally spaced rotation, and clustered rotation) were also observed in experiments by changing the diameter of the water channel. The mode bifurcation of these motions, including their coexistence, were clarified numerically and analytically in terms of the number density of the disk. These results suggest that the present mathematical model and the analysis of the equations can be worthwhile in understanding the characteristic features of motion, e.g., synchronization, collective motion, and their mode bifurcation.

3.
Phys Chem Chem Phys ; 17(14): 9148-52, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25757627

RESUMO

The photo-sensitive Belousov-Zhabotinsky (BZ) reaction system was investigated to understand the response of wave propagation to local pulse stimulation in an excitable field. When the chemical wave was irradiated with a bright pulse or a dark pulse, the speed of wave propagation decreased or increased. The timing of pulse irradiation that significantly affected the speed of chemical wave propagation was different with the bright and dark pulses. That is, there is a sensitive point in the chemical wave. The experimental results were qualitatively reproduced by a numerical calculation based on a three-variable Oregonator model that was modified for the photosensitive BZ reaction. These results suggest that the chemical wave is sensitive to the timing of pulse irradiation due to the rates of production of an activator and an inhibitor in the photochemical reaction.


Assuntos
Simulação por Computador , Modelos Teóricos , Fotoquímica , Rutênio/química , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA