Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 3(11): 3194-3203, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38034953

RESUMO

Solution-processed inorganic solar cells with less toxic and earth-abundant elements are emerging as viable alternatives to high-performance lead-halide perovskite solar cells. However, the wide range of elements and process parameters impede the rapid exploration of vast chemical spaces. Here, we developed an automated robot-embedded measurement system that performs photoabsorption spectroscopy, optical microscopy, and white-light flash time-resolved microwave conductivity (TRMC). We tested 576 films of quaternary element-blended wide-bandgap Cs-Bi-Sb-I semiconductors with various compositions, organic salt additives (MACl, FACl, MAI, and FAI, where MA and FA represent methylammonium and formamidinium, respectively), and thermal annealing temperatures. Among them, we found that the maximum power conversion efficiency (PCE) was 2.36%, which is significantly higher than the PCE of 0.68% for a reference film without an additive. Machine learning (ML) and statistical analyses revealed significant features and their relationships with TRMC transients, thereby demonstrating the advantages of combining ML and automated experiments for the high-throughput exploration of photovoltaic materials.

2.
BMC Ecol ; 17(1): 37, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29228938

RESUMO

BACKGROUND: Invasive ecosystem engineers can facilitate their invasions by modifying the physical environment to improve their own performance, but this positive feedback process has rarely been tested empirically except in sessile organisms. The invasive crayfish Procambarus clarkii is an ecosystem engineer that destroys aquatic macrophytes, which provide a physical refuge for animal prey, and this destruction is likely to enhance vulnerability to predators. Using two series of mesocosm experiments, we tested the hypothesis that the invasive crayfish increases its feeding efficiency on animal prey by reducing submerged macrophytes, thus increasing its individual growth rate in a positive density-dependent manner. RESULTS: In the first experiment, increasing crayfish density reduced both macrophytes and animal prey (dragonfly and chironomid larvae) and, importantly, increased the growth rate of individual crayfish, in accordance with our expectation. In the second experiment, we used artificial macrophytes to clarify whether the physical architecture of macrophytes itself protects animal prey and limits crayfish growth rate. Increasing the artificial macrophyte quantity not only increased the survival of animal prey, but also retarded the crayfish growth rate. CONCLUSIONS: We conclude that macrophytes strengthen bottom-up control of crayfish, but this effect can be relaxed by increasing the density of crayfish via reduction in macrophytes. This positive feedback process may explain the crayfish outbreaks and regime shifts occasionally observed in invaded freshwater ecosystems.


Assuntos
Astacoidea/fisiologia , Ecossistema , Cadeia Alimentar , Espécies Introduzidas , Animais , Astacoidea/crescimento & desenvolvimento , Chironomidae/crescimento & desenvolvimento , Comportamento Alimentar , Água Doce , Larva/crescimento & desenvolvimento , Odonatos/crescimento & desenvolvimento , Desenvolvimento Vegetal , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...