Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene Expr Patterns ; 31: 42-59, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30677493

RESUMO

The last common ancestor of Bilateria and Cnidaria is considered to develop a nervous system over 500 million years ago. Despite the long course of evolution, many of the neuron-related genes, which are active in Bilateria, are also found in the cnidarian Hydra. Thus, Hydra is a good model to study the putative primitive nervous system in the last common ancestor that had the great potential to evolve to a more advanced one. Regionalization of the nervous system is one of the advanced features of bilaterian nervous system. Although a regionalized nervous system is already known to be present in Hydra, its developmental mechanisms are poorly understood. In this study we show how it is formed and maintained, focusing on the neuropeptide Hym-176 gene and its paralogs. First, we demonstrate that four axially localized neuron subsets that express different combination of the neuropeptide Hym-176 gene and its paralogs cover almost an entire body, forming a regionalized nervous system in Hydra. Second, we show that positional information governed by the Wnt signaling pathway plays a key role in determining the regional specificity of the neuron subsets as is the case in bilaterians. Finally, we demonstrated two basic mechanisms, regionally restricted new differentiation and phenotypic conversion, both of which are in part conserved in bilaterians, are involved in maintaining boundaries between the neuron subsets. Therefore, this study is the first comprehensive analysis of the anatomy and developmental regulation of the divergently evolved and axially regionalized peptidergic nervous system in Hydra, implicating an ancestral origin of neural regionalization.


Assuntos
Cnidários/crescimento & desenvolvimento , Sistema Nervoso/crescimento & desenvolvimento , Animais , Cnidários/metabolismo , Sistema Nervoso/citologia , Sistema Nervoso/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Via de Sinalização Wnt
2.
Mol Biol Evol ; 32(8): 1928-47, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25841488

RESUMO

The cnidarian freshwater polyp Hydra sp. exhibits an unparalleled regeneration capacity in the animal kingdom. Using an integrative transcriptomic and stable isotope labeling by amino acids in cell culture proteomic/phosphoproteomic approach, we studied stem cell-based regeneration in Hydra polyps. As major contributors to head regeneration, we identified diverse signaling pathways adopted for the regeneration response as well as enriched novel genes. Our global analysis reveals two distinct molecular cascades: an early injury response and a subsequent, signaling driven patterning of the regenerating tissue. A key factor of the initial injury response is a general stabilization of proteins and a net upregulation of transcripts, which is followed by a subsequent activation cascade of signaling molecules including Wnts and transforming growth factor (TGF) beta-related factors. We observed moderate overlap between the factors contributing to proteomic and transcriptomic responses suggesting a decoupled regulation between the transcriptional and translational levels. Our data also indicate that interstitial stem cells and their derivatives (e.g., neurons) have no major role in Hydra head regeneration. Remarkably, we found an enrichment of evolutionarily more recent genes in the early regeneration response, whereas conserved genes are more enriched in the late phase. In addition, genes specific to the early injury response were enriched in transposon insertions. Genetic dynamicity and taxon-specific factors might therefore play a hitherto underestimated role in Hydra regeneration.


Assuntos
Regulação da Expressão Gênica/fisiologia , Hydra/fisiologia , Regeneração/fisiologia , Transcriptoma/fisiologia , Via de Sinalização Wnt/fisiologia , Animais , Perfilação da Expressão Gênica/métodos
3.
Dev Biol ; 386(1): 237-51, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24355748

RESUMO

To preserve genome integrity, an evolutionarily conserved small RNA-based silencing mechanism involving PIWI proteins and PIWI-interacting RNAs (piRNAs) represses potentially deleterious transposons in animals. Although there has been extensive research into PIWI proteins in bilaterians, these proteins remain to be examined in ancient phyla. Here, we investigated the PIWI proteins Hywi and Hyli in the cnidarian Hydra, and found that both PIWI proteins are enriched in multipotent stem cells, germline stem cells, and in the female germline. Hywi and Hyli localize to the nuage, a perinuclear organelle that has been implicated in piRNA-mediated transposon silencing, together with other conserved nuage and piRNA pathway components. Our findings provide the first report of nuage protein localization patterns in a non-bilaterian. Hydra PIWI proteins possess symmetrical dimethylarginines: modified residues that are known to aid in PIWI protein localization to the nuage and proper piRNA loading. piRNA profiling suggests that transposons are the major targets of the piRNA pathway in Hydra. Our data suggest that piRNA biogenesis through the ping-pong amplification cycle occurs in Hydra and that Hywi and Hyli are likely to preferentially bind primary and secondary piRNAs, respectively. Presumptive piRNA clusters are unidirectionally transcribed and primarily give rise to piRNAs that are antisense to transposons. These results indicate that various conserved features of PIWI proteins, the piRNA pathway, and their associations with the nuage were likely established before the evolution of bilaterians.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Hydra/genética , RNA Interferente Pequeno/metabolismo , Animais , Evolução Biológica , Mapeamento de Sequências Contíguas , Citoplasma/metabolismo , Elementos de DNA Transponíveis , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Feminino , Inativação Gênica , Células Germinativas/citologia , Proteínas de Fluorescência Verde/metabolismo , Hydra/fisiologia , Camundongos , Oligonucleotídeos Antissenso/metabolismo , Filogenia , Interferência de RNA , Células-Tronco/citologia
4.
Int J Dev Biol ; 56(6-8): 499-508, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22689373

RESUMO

The sex of germline stem cells (GSCs) in Hydra is determined in a cell-autonomous manner. In gonochoristic species like Hydra magnipapillata or H. oligactis, where the sexes are separate, male polyps have sperm-restricted stem cells (SpSCs), while females have egg-restricted stem cells (EgSCs). These GSCs self-renew in a polyp, and are usually transmitted to a new bud from a parental polyp during asexual reproduction. But if these GSCs are lost during subsequent budding or regeneration events, new ones are generated from multipotent stem cells (MPSCs). MPSCs are the somatic stem cells in Hydra that ordinarily differentiate into nerve cells, nematocytes (stinging cells in cnidarians), and gland cells. By means of such a backup system, sexual reproduction is guaranteed for every polyp. Interestingly, Hydra polyps occasionally undergo sex-reversal. This implies that each polyp can produce either type of GSCs, i.e. Hydra are genetically hermaphroditic. Nevertheless a polyp possesses only one type of GSCs at a time. We propose a plausible model for sex-reversal in Hydra. We also discuss so-called germline specific genes, which are expressed in both GSCs and MPSCs, and some future plans to investigate Hydra GSCs.


Assuntos
Gametogênese , Hydra/citologia , Hydra/fisiologia , Células-Tronco Multipotentes/fisiologia , Processos de Determinação Sexual , Animais , Diferenciação Celular , Divisão Celular , Feminino , Células Germinativas , Masculino , Neurônios/fisiologia
5.
Nature ; 464(7288): 592-6, 2010 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-20228792

RESUMO

The freshwater cnidarian Hydra was first described in 1702 and has been the object of study for 300 years. Experimental studies of Hydra between 1736 and 1744 culminated in the discovery of asexual reproduction of an animal by budding, the first description of regeneration in an animal, and successful transplantation of tissue between animals. Today, Hydra is an important model for studies of axial patterning, stem cell biology and regeneration. Here we report the genome of Hydra magnipapillata and compare it to the genomes of the anthozoan Nematostella vectensis and other animals. The Hydra genome has been shaped by bursts of transposable element expansion, horizontal gene transfer, trans-splicing, and simplification of gene structure and gene content that parallel simplification of the Hydra life cycle. We also report the sequence of the genome of a novel bacterium stably associated with H. magnipapillata. Comparisons of the Hydra genome to the genomes of other animals shed light on the evolution of epithelia, contractile tissues, developmentally regulated transcription factors, the Spemann-Mangold organizer, pluripotency genes and the neuromuscular junction.


Assuntos
Genoma/genética , Hydra/genética , Animais , Antozoários/genética , Comamonadaceae/genética , Elementos de DNA Transponíveis/genética , Transferência Genética Horizontal/genética , Genoma Bacteriano/genética , Hydra/microbiologia , Hydra/ultraestrutura , Dados de Sequência Molecular , Junção Neuromuscular/ultraestrutura
6.
Proc Natl Acad Sci U S A ; 104(37): 14735-40, 2007 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-17766437

RESUMO

Cell lineages of cnidarians including Hydra represent the fundamental cell types of metazoans and provides us a unique opportunity to study the evolutionary diversification of cell type in the animal kingdom. Hydra contains epithelial cells as well as a multipotent interstitial cell (I-cell) that gives rise to nematocytes, nerve cells, gland cells, and germ-line cells. We used cDNA microarrays to identify cell type-specific genes by comparing gene expression in normal Hydra with animals lacking the I-cell lineage, so-called epithelial Hydra. We then performed in situ hybridization to localize expression to specific cell types. Eighty-six genes were shown to be expressed in specific cell types of the I-cell lineage. An additional 29 genes were expressed in epithelial cells and were down-regulated in epithelial animals lacking I-cells. Based on the above information, we constructed a database (http://hydra.lab.nig.ac.jp/hydra/), which describes the expression patterns of cell type-specific genes in Hydra. Most genes expressed specifically in either I-cells or epithelial cells have homologues in higher metazoans. By comparison, most nematocyte-specific genes and approximately half of the gland cell- and nerve cell-specific genes are unique to the cnidarian lineage. Because nematocytes, gland cells, and nerve cells appeared along with the emergence of cnidarians, this suggests that lineage-specific genes arose in cnidarians in conjunction with the evolution of new cell types required by the cnidarians.


Assuntos
Evolução Molecular , Expressão Gênica , Hydra/citologia , Hydra/genética , Animais , Linhagem da Célula , DNA Complementar , Bases de Dados Factuais , Hibridização In Situ , Análise de Sequência com Séries de Oligonucleotídeos
7.
FEBS J ; 274(20): 5438-48, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17894820

RESUMO

In the course of systematic identification of peptide signaling molecules combined with the expressed sequence tag database from Hydra, we have identified a novel neuropeptide family that consists of two members with FRamide at the C-terminus; FRamide-1 (IPTGTLIFRamide) and FRamide-2 (APGSLLFRamide). The precursor sequence deduced from cDNA contained a single copy each of FRamide-1 and FRamide-2 precursor sequences. Expression analysis by whole-mount in situ hybridization showed that the gene was expressed in a subpopulation of neurons that were distributed throughout the body from tentacles to basal disk. Double in situ hybridization analysis showed that the expressing cell population was further subdivided into one population consisting of neurons expressing both the FRamide and Hym176 (neuropeptide) genes and the other consisting of neurons expressing only the FRamide gene. FRamide-1 evoked elongation of the body column of 'epithelial' Hydra that was composed of epithelial cells and gland cells but lacked all the cells in the interstitial stem cell lineage, including neurons. In contrast, FRamide-2 evoked body column contraction. These results suggest that both of the neuropeptides directly act on epithelial cells as neurotransmitters and regulate body movement in an axial direction.


Assuntos
Hydra/genética , Neuropeptídeos/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Bioensaio , Clonagem Molecular , Expressão Gênica , Hydra/química , Hydra/metabolismo , Hibridização In Situ , Dados de Sequência Molecular , Neuropeptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...