Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 41(11): 111835, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36516783

RESUMO

As opposed to de novo mutation, ß-lactam resistance in S. pneumoniae is often conferred via homologous recombination during horizontal gene transfer. We hypothesize that ß-lactam resistance in pathogenic streptococci is restricted to naturally competent species via intra-/interspecies recombination due to in vivo fitness trade-offs of de novo penicillin-binding protein (PBP) mutations. We show that de novo mutant populations have abrogated invasive disease capacity and are difficult to evolve in vivo. Conversely, serially transformed recombinant strains efficiently integrate resistant oral streptococcal DNA, gain penicillin resistance and tolerance, and retain virulence in mice. Large-scale changes in pbp2X, pbp2B, and non-PBP-related genes occur in recombinant isolates. Our results indicate that horizontal transfer of ß-lactam resistance engenders initially favorable or minimal cost changes in vivo compared with de novo mutation(s), underscoring the importance of recombination in the emergence of ß-lactam resistance and suggesting why some pathogenic streptococci lacking innate competence remain universally susceptible.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Camundongos , Animais , Streptococcus pneumoniae/genética , Transferência Genética Horizontal , Virulência/genética , Testes de Sensibilidade Microbiana , Resistência beta-Lactâmica/genética , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Mutação/genética , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo
2.
Nat Commun ; 13(1): 3165, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672367

RESUMO

Detailed knowledge on how bacteria evade antibiotics and eventually develop resistance could open avenues for novel therapeutics and diagnostics. It is thereby key to develop a comprehensive genome-wide understanding of how bacteria process antibiotic stress, and how modulation of the involved processes affects their ability to overcome said stress. Here we undertake a comprehensive genetic analysis of how the human pathogen Streptococcus pneumoniae responds to 20 antibiotics. We build a genome-wide atlas of drug susceptibility determinants and generated a genetic interaction network that connects cellular processes and genes of unknown function, which we show can be used as therapeutic targets. Pathway analysis reveals a genome-wide atlas of cellular processes that can make a bacterium less susceptible, and often tolerant, in an antibiotic specific manner. Importantly, modulation of these processes confers fitness benefits during active infections under antibiotic selection. Moreover, screening of sequenced clinical isolates demonstrates that mutations in genes that decrease antibiotic sensitivity and increase tolerance readily evolve and are frequently associated with resistant strains, indicating such mutations could be harbingers for the emergence of antibiotic resistance.


Assuntos
Antibacterianos , Streptococcus pneumoniae , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Tolerância a Medicamentos , Humanos , Testes de Sensibilidade Microbiana
3.
J Infect Dis ; 223(12 Suppl 2): S201-S208, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33330907

RESUMO

The bacterial, fungal, and helminthic species that comprise the microbiome of the mammalian host have profound effects on health and disease. Pathogenic viruses must contend with the microbiome during infection and likely have evolved to exploit or evade the microbiome. Both direct interactions between the virions and the microbiota and immunomodulation and tissue remodeling caused by the microbiome alter viral pathogenesis in either host- or virus-beneficial ways. Recent insights from in vitro and murine models of viral pathogenesis have highlighted synergistic and antagonistic, direct and indirect interactions between the microbiome and pathogenic viruses. This review will focus on the transkingdom interactions between human gastrointestinal and respiratory viruses and the constituent microbiome of those tissues.


Assuntos
Microbiota/fisiologia , Vírus/patogenicidade , Animais , Fenômenos Fisiológicos Bacterianos , Bacteriófagos/fisiologia , Fungos/fisiologia , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/parasitologia , Trato Gastrointestinal/virologia , Helmintos/fisiologia , Humanos , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/parasitologia , Pulmão/virologia , Vírus/classificação
4.
Front Microbiol ; 11: 1543, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714314

RESUMO

Streptococcus pneumoniae is an opportunistic pathogen responsible for widespread illness and is a major global health issue for children, the elderly, and the immunocompromised population. Pneumolysin (PLY) is a cholesterol-dependent cytolysin (CDC) and key pneumococcal virulence factor involved in all phases of pneumococcal disease, including transmission, colonization, and infection. In this review we cover the biology and cytolytic function of PLY, its contribution to S. pneumoniae pathogenesis, and its known interactions and effects on the host with regard to tissue damage and immune response. Additionally, we review statins as a therapeutic option for CDC toxicity and PLY toxoid as a vaccine candidate in protein-based vaccines.

5.
J Antimicrob Chemother ; 75(2): 257-270, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31603213

RESUMO

Candida albicans is an opportunistic yeast and the major human fungal pathogen in the USA, as well as in many other regions of the world. Infections with C. albicans can range from superficial mucosal and dermatological infections to life-threatening infections of the bloodstream and vital organs. The azole antifungals remain an important mainstay treatment of candidiasis and therefore the investigation and understanding of the evolution, frequency and mechanisms of azole resistance are vital to improving treatment strategies against this organism. Here the organism C. albicans and the genetic changes and molecular bases underlying the currently known resistance mechanisms to the azole antifungal class are reviewed, including up-regulated expression of efflux pumps, changes in the expression and amino acid composition of the azole target Erg11 and alterations to the organism's typical sterol biosynthesis pathways. Additionally, we update what is known about activating mutations in the zinc cluster transcription factor (ZCF) genes regulating many of these resistance mechanisms and review azole import as a potential contributor to azole resistance. Lastly, investigations of azole tolerance in C. albicans and its implicated clinical significance are reviewed.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Candida albicans , Candidíase , Farmacorresistência Fúngica , Antifúngicos/uso terapêutico , Azóis/uso terapêutico , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candidíase/tratamento farmacológico , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Humanos , Testes de Sensibilidade Microbiana , Fatores de Transcrição/genética
6.
Artigo em Inglês | MEDLINE | ID: mdl-31383660

RESUMO

VT-1161 and VT-1598 are promising investigational tetrazole antifungals that have shown in vitro and in vivo activity against Candida and other fungi. Candida glabrata is a problematic opportunistic pathogen that is associated with high mortality in invasive infection, as well as both intrinsic and rapidly acquired antifungal resistance. The MICs of VT-1161 and VT-1598 were determined by CLSI methodology to evaluate their in vitro activities against clinical C. glabrata isolates and strains containing individual deletions of the zinc cluster transcription factor genes PDR1 and UPC2A as well as the efflux transporter genes CDR1, PDH1, and SNQ2 Overall, both tetrazoles demonstrated relative activities comparable to those of the tested triazole antifungals against clinical C. glabrata isolates (MIC range, 0.25 to 2 mg/liter and 0.5 to 2 µg/ml for VT-1161 and VT-1598, respectively). Deletion of the PDR1 gene in fluconazole-resistant matched clinical isolate SM3 abolished the decreased susceptibility phenotype completely for both VT-1161 and VT-1598, similarly to the triazoles. UPC2A deletion also increased susceptibility to both triazoles and tetrazoles but to a lesser extent than PDR1 deletion. Of the three major transporter genes regulated by Pdr1, CDR1 deletion resulted in the largest MIC reductions for all agents tested, while PDH1 and SNQ2 deletion individually impacted MICs very little. Overall, both VT-1161 and VT-1598 have comparable activities to those of the available triazoles, and decreased susceptibility to these tetrazoles in C. glabrata is driven by many of the same known resistance mechanisms.


Assuntos
Antifúngicos/farmacologia , Candida glabrata/efeitos dos fármacos , Piridinas/farmacologia , Tetrazóis/farmacologia , Candida glabrata/genética , Candida glabrata/metabolismo , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Testes de Sensibilidade Microbiana , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-30858206

RESUMO

The increasing incidence of and high mortality rates associated with invasive fungal infections (IFIs) impose an enormous clinical, social, and economic burden on humankind. In addition to microbiological resistance to existing antifungal drugs, the large number of unexplained treatment failures is a serious concern. Due to the extremely limited therapeutic options available, it is critical to identify and understand the various causes of treatment failure if patient outcomes are to improve. In this study, we examined one potential source of treatment failure: antagonistic drug interactions. Using a simple screen, we systematically identified currently approved medications that undermine the antifungal activity of three major antifungal drugs-fluconazole, caspofungin, and amphotericin B-on four prevalent human fungal pathogens-Candida albicans, Candida glabrata, Candida parapsilosis, and Candida tropicalis This revealed that a diverse collection of structurally distinct drugs exhibit antagonistic interactions with fluconazole. Several antagonistic agents selected for follow-up studies induce azole resistance through a mechanism that depends on Tac1p/Pdr1p zinc-cluster transcription factors, which activate the expression of drug efflux pumps belonging to the ABC-type transporter family. Few antagonistic interactions were identified with caspofungin or amphotericin B, possibly reflecting their cell surface mode of action that should not be affected by drug efflux mechanisms. Given that patients at greatest risk of IFIs usually receive a multitude of drugs to treat various underlying conditions, these studies suggest that chemically inducible azole resistance may be much more common and important than previously realized.


Assuntos
Anfotericina B/farmacologia , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Azóis/farmacologia , Farmacorresistência Fúngica , Equinocandinas/farmacologia , Haloperidol/farmacologia , Humanos , Morfolinas/farmacologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-30833425

RESUMO

Mutations in genes encoding zinc cluster transcription factors (ZCFs) such as TAC1, MRR1, and UPC2 play a key role in Candida albicans azole antifungal resistance. Artificial activation of the ZCF Mrr2 has shown increased expression of the gene encoding the Cdr1 efflux pump and resistance to fluconazole. Amino acid substitutions in Mrr2 have recently been reported to contribute to fluconazole resistance in clinical isolates. In the present study, 57 C. albicans clinical isolates with elevated fluconazole MICs were examined for mutations in MRR2 and expression of CDR1 Mutations in MRR2 resulting in 15 amino acid substitutions were uniquely identified among resistant isolates, including 4 substitutions (S466L, A468G, S469T, T470N) previously reported to reduce fluconazole susceptibility. Three additional, novel amino acid substitutions (R45Q, A459T, V486M) were also discovered in fluconazole-resistant isolates. When introduced into a fluconazole-susceptible background, no change in fluconazole MIC or CDR1 expression was observed for any of the mutations found in this collection. However, introduction of an allele leading to artificial activation of Mrr2 increased resistance to fluconazole as well as CDR1 expression. Moreover, Mrr2 amino acid changes reported previously to have the strongest effect on fluconazole susceptibility and CDR1 expression also exhibited no differences in fluconazole susceptibility or CDR1 expression relative to the parent strain. While all known fluconazole resistance mechanisms are represented within this collection of clinical isolates and contribute to fluconazole resistance to different extents, mutations in MRR2 do not appear to alter CDR1 expression or contribute to resistance in any of these isolates.


Assuntos
Candida albicans/efeitos dos fármacos , Candida albicans/metabolismo , Fluconazol/farmacologia , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/metabolismo , Azóis/farmacologia , Candida albicans/genética , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/genética , Testes de Sensibilidade Microbiana , Mutação/genética , Fatores de Transcrição/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-30910896

RESUMO

The fungal Cyp51-specific inhibitors VT-1161 and VT-1598 have emerged as promising new therapies to combat fungal infections, including Candida spp. To evaluate their in vitro activities compared to other azoles, MICs were determined by Clinical and Laboratory Standards Institute (CLSI) method for VT-1161, VT-1598, fluconazole, voriconazole, itraconazole, and posaconazole against 68 C. albicans clinical isolates well characterized for azole resistance mechanisms and mutant strains representing individual azole resistance mechanisms. VT-1161 and VT-1598 demonstrated potent activity (geometric mean MICs ≤0.15 µg/ml) against predominantly fluconazole-resistant (≥8 µg/ml) isolates. However, five of 68 isolates exhibited MICs greater than six dilutions (>2 µg/ml) to both tetrazoles compared to fluconazole-susceptible isolates. Four of these isolates likewise exhibited high MICs beyond the upper limit of the assay for all triazoles tested. A premature stop codon in ERG3 likely explained the high-level resistance in one isolate. VT-1598 was effective against strains with hyperactive Tac1, Mrr1, and Upc2 transcription factors and against most ERG11 mutant strains. VT-1161 MICs were elevated compared to the control strain SC5314 for hyperactive Tac1 strains and two strains with Erg11 substitutions (Y132F and Y132F&K143R) but showed activity against hyperactive Mrr1 and Upc2 strains. While mutations affecting Erg3 activity appear to greatly reduce susceptibility to VT-1161 and VT-1598, the elevated MICs of both tetrazoles for four isolates could not be explained by known azole resistance mechanisms, suggesting the presence of undescribed resistance mechanisms to triazole- and tetrazole-based sterol demethylase inhibitors.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Candida albicans/efeitos dos fármacos , Farmacorresistência Fúngica/efeitos dos fármacos , Piridinas/farmacologia , Tetrazóis/farmacologia , Candida albicans/genética , Farmacorresistência Fúngica/genética , Fluconazol/farmacologia , Proteínas Fúngicas/genética , Humanos , Testes de Sensibilidade Microbiana/métodos , Mutação/genética , Fatores de Transcrição/genética
10.
Artigo em Inglês | MEDLINE | ID: mdl-30783005

RESUMO

Recombinant Candida albicans CYP51 (CaCYP51) proteins containing 23 single and 5 double amino acid substitutions found in clinical strains and the wild-type enzyme were expressed in Escherichia coli and purified by Ni2+-nitrilotriacetic acid agarose chromatography. Catalytic tolerance to azole antifungals was assessed by determination of the concentration causing 50% enzyme inhibition (IC50) using CYP51 reconstitution assays. The greatest increase in the IC50 compared to that of the wild-type enzyme was observed with the five double substitutions Y132F+K143R (15.3-fold), Y132H+K143R (22.1-fold), Y132F+F145L (10.1-fold), G307S+G450E (13-fold), and D278N+G464S (3.3-fold). The single substitutions K143R, D278N, S279F, S405F, G448E, and G450E conferred at least 2-fold increases in the fluconazole IC50, and the Y132F, F145L, Y257H, Y447H, V456I, G464S, R467K, and I471T substitutions conferred increased residual CYP51 activity at high fluconazole concentrations. In vitro testing of select CaCYP51 mutations in C. albicans showed that the Y132F, Y132H, K143R, F145L, S405F, G448E, G450E, G464S, Y132F+K143R, Y132F+F145L, and D278N+G464S substitutions conferred at least a 2-fold increase in the fluconazole MIC. The catalytic tolerance of the purified proteins to voriconazole, itraconazole, and posaconazole was far lower and limited to increased residual activities at high triazole concentrations for certain mutations rather than large increases in IC50 values. Itraconazole was the most effective at inhibiting CaCYP51. However, when tested against CaCYP51 mutant strains, posaconazole seemed to be the most resistant to changes in MIC as a result of CYP51 mutation compared to itraconazole, voriconazole, or fluconazole.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Candida albicans/efeitos dos fármacos , Esterol 14-Desmetilase/metabolismo , Sequência de Aminoácidos , Candida albicans/genética , Fluconazol/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Itraconazol/farmacologia , Mutação/genética , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Esterol 14-Desmetilase/genética , Triazóis/farmacologia , Voriconazol/farmacologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-30718246

RESUMO

Candida auris has rapidly emerged as a health care-associated and multidrug-resistant pathogen of global concern. In this work, we examined the relative expression of the four C. auris genes with the highest degree of homology to Candida albicansCDR1 and MDR1 among three triazole-resistant clinical isolates as compared to the triazole-susceptible genome reference clinical isolate. We subsequently utilized a novel Cas9-mediated system for genetic manipulations to delete C. aurisCDR1 and MDR1 in both a triazole-resistant clinical isolate and a susceptible reference strain and observed that MICs for all clinically available triazoles decreased as much as 128-fold in the CDR1 deletion strains. The findings of this work reveal for the first time that C. aurisCDR1 and MDR1 are more highly expressed among triazole-resistant clinical isolates of C. auris and that the overexpression of CDR1 is a significant contributor to clinical triazole resistance.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Candida/genética , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Proteína 9 Associada à CRISPR/genética , Candida/isolamento & purificação , Candidíase/microbiologia , Farmacorresistência Fúngica/efeitos dos fármacos , Fluconazol/farmacologia , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Humanos , Proteínas de Membrana Transportadoras/genética , Testes de Sensibilidade Microbiana , Microrganismos Geneticamente Modificados , Triazóis/farmacologia
12.
mBio ; 9(3)2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789366

RESUMO

Inactivation of sterol Δ5,6-desaturase (Erg3p) in the prevalent fungal pathogen Candida albicans is one of several mechanisms that can confer resistance to the azole antifungal drugs. However, loss of Erg3p activity is also associated with deficiencies in stress tolerance, invasive hyphal growth, and attenuated virulence in a mouse model of disseminated infection. This may explain why relatively few erg3-deficient strains have been reported among azole-resistant clinical isolates. In this study, we examined the consequences of Erg3p inactivation upon C. albicans pathogenicity and azole susceptibility in mouse models of mucosal and disseminated infection. While a C. albicanserg3Δ/Δ mutant was unable to cause lethality in the disseminated model, it induced pathology in a mouse model of vaginal infection. The erg3Δ/Δ mutant was also more resistant to fluconazole treatment than the wild type in both models of infection. Thus, complete loss of Erg3p activity confers azole resistance but also niche-specific virulence deficiencies. Serendipitously, we discovered that loss of azole-inducible ERG3 transcription (rather than complete inactivation) is sufficient to confer in vitro fluconazole resistance, without compromising C. albicans stress tolerance, hyphal growth, or pathogenicity in either mouse model. It is also sufficient to confer fluconazole resistance in the mouse vaginal model, but not in the disseminated model of infection, and thus confers niche-specific azole resistance without compromising C. albicans pathogenicity at either site. Collectively, these results establish that modulating Erg3p expression or activity can have niche-specific consequences on both C. albicans pathogenicity and azole resistance.IMPORTANCE While conferring resistance to the azole antifungals in vitro, loss of sterol Δ5,6-desaturase (Erg3p) activity has also been shown to reduce C. albicans pathogenicity. Accordingly, it has been presumed that this mechanism may not be significant in the clinical setting. The results presented here challenge this assumption, revealing a more complex relationship between Erg3p activity, azole resistance, C. albicans pathogenicity, and the specific site of infection. Most importantly, we have shown that even modest changes in ERG3 transcription are sufficient to confer azole resistance without compromising C. albicans fitness or pathogenicity. Given that previous efforts to assess the importance of ERG3 as a determinant of clinical azole resistance have focused almost exclusively on detecting null mutants, its role may have been grossly underestimated. On the basis of our results, a more thorough investigation of the contribution of the ERG3 gene to azole resistance in the clinical setting is warranted.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Candida albicans/patogenicidade , Candidíase/microbiologia , Farmacorresistência Fúngica , Proteínas Fúngicas/metabolismo , Oxirredutases/metabolismo , Transativadores/metabolismo , Animais , Candida albicans/efeitos dos fármacos , Candida albicans/enzimologia , Candida albicans/genética , Feminino , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Oxirredutases/genética , Transativadores/genética , Virulência/efeitos dos fármacos
13.
Artigo em Inglês | MEDLINE | ID: mdl-28630186

RESUMO

Among emerging non-albicans Candida species, Candida parapsilosis is of particular concern as a cause of nosocomial bloodstream infections in neonatal and intensive care unit patients. While fluconazole and echinocandins are considered effective treatments for such infections, recent reports of fluconazole and echinocandin resistance in C. parapsilosis indicate a growing problem. The present study describes a novel mechanism of antifungal resistance in this organism affecting susceptibility to azole and echinocandin antifungals in a clinical isolate obtained from a patient with prosthetic valve endocarditis. Transcriptome analysis indicated differential expression of several genes in the resistant isolate, including upregulation of ergosterol biosynthesis pathway genes ERG2, ERG5, ERG6, ERG11, ERG24, ERG25, and UPC2 Whole-genome sequencing revealed that the resistant isolate possessed an ERG3 mutation resulting in a G111R amino acid substitution. Sterol profiles indicated a reduction in sterol desaturase activity as a result of this mutation. Replacement of both mutant alleles in the resistant isolate with the susceptible isolate's allele restored wild-type susceptibility to all azoles and echinocandins tested. Disruption of ERG3 in the susceptible and resistant isolates resulted in a loss of sterol desaturase activity, high-level azole resistance, and an echinocandin-intermediate to -resistant phenotype. While disruption of ERG3 in C. albicans resulted in azole resistance, echinocandin MICs, while elevated, remained within the susceptible range. This work demonstrates that the G111R substitution in Erg3 is wholly responsible for the altered azole and echinocandin susceptibilities observed in this C. parapsilosis isolate and is the first report of an ERG3 mutation influencing susceptibility to the echinocandins.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Candida parapsilosis/efeitos dos fármacos , Candida parapsilosis/genética , Equinocandinas/farmacologia , Oxirredutases/genética , Azóis/metabolismo , Candida parapsilosis/isolamento & purificação , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/microbiologia , Infecção Hospitalar/prevenção & controle , Farmacorresistência Fúngica Múltipla/genética , Equinocandinas/metabolismo , Ergosterol/biossíntese , Ergosterol/genética , Fungemia/tratamento farmacológico , Fungemia/microbiologia , Fungemia/prevenção & controle , Dosagem de Genes/genética , Genoma Fúngico/genética , Humanos , Testes de Sensibilidade Microbiana , Polimorfismo de Nucleotídeo Único/genética
14.
In Vivo ; 31(1): 121-124, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-28064230

RESUMO

BACKGROUND: Thiamine deficiency can lead to Wernicke's encephalopathy (WE), an acute and potentially life-threatening neurological disorder. Even though the main treatment modality for WE consists of thiamine replacement, evidence supporting an optimal dosing strategy and duration is unclear. PATIENTS AND METHODS: We present a single-center case series of eleven patients that were admitted with possible WE and treated with high-dose parenteral thiamine. RESULTS: Patients with suspected WE were treated with ≥500 mg intravenous thiamine for a median of 3 days with 73% of patients (eight out of eleven) displaying symptom resolution or improvement after treatment. No significant correlation between symptom resolution and timing of high-dose thiamine initiation (median=92 h) was identified. In patients whose symptoms resolved compared to those whose symptoms did not, there were no differences in patient variables nor adverse effects related to thiamine treatment. CONCLUSION: High-dose thiamine (≥500 mg) appears safe and efficacious for use in patients with suspected WE.


Assuntos
Deficiência de Tiamina/complicações , Tiamina/uso terapêutico , Complexo Vitamínico B/uso terapêutico , Encefalopatia de Wernicke/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Relação Dose-Resposta a Droga , Feminino , Humanos , Pessoa de Meia-Idade , Prognóstico , Encefalopatia de Wernicke/etiologia
15.
Front Microbiol ; 7: 2173, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28127295

RESUMO

Within the limited antifungal armamentarium, the azole antifungals are the most frequent class used to treat Candida infections. Azole antifungals such as fluconazole are often preferred treatment for many Candida infections as they are inexpensive, exhibit limited toxicity, and are available for oral administration. There is, however, extensive documentation of intrinsic and developed resistance to azole antifungals among several Candida species. As the frequency of azole resistant Candida isolates in the clinical setting increases, it is essential to elucidate the mechanisms of such resistance in order to both preserve and improve upon the azole class of antifungals for the treatment of Candida infections. This review examines azole resistance in infections caused by C. albicans as well as the emerging non-albicans Candida species C. parapsilosis, C. tropicalis, C. krusei, and C. glabrata and in particular, describes the current understanding of molecular basis of azole resistance in these fungal species.

16.
Pharmacotherapy ; 35(11): 1037-51, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26598096

RESUMO

Coinciding with the continually increasing population of immunocompromised patients worldwide, the incidence of invasive fungal infections has grown over the past 4 decades. Unfortunately, infections caused by both yeasts such as Candida and molds such as Aspergillus or Mucorales remain associated with unacceptably high morbidity and mortality. In addition, the available antifungals with proven efficacy in the treatment of these infections remain severely limited. Although previously available second-generation triazole antifungals have significantly expanded the spectrum of the triazole antifungal class, these agents are laden with shortcomings in their safety profiles as well as formulation and pharmacokinetic challenges. Isavuconazole, administered as the prodrug isavuconazonium, is the latest second-generation triazole antifungal to receive U.S. Food and Drug Administration approval. Approved for the treatment of both invasive aspergillosis and invasive mucormycosis, and currently under investigation for the treatment of candidemia and invasive candidiasis, isavuconazole may have therapeutic advantages over its predecessors. With clinically relevant antifungal potency against a broad range of yeasts, dimorphic fungi, and molds, isavuconazole has a spectrum of activity reminiscent of the polyene amphotericin B. Moreover, clinical experience thus far has revealed isavuconazole to be associated with fewer toxicities than voriconazole, even when administered without therapeutic drug monitoring. These characteristics, in an agent available in both a highly bioavailable oral and a ß-cyclodextrin-free intravenous formulation, will likely make isavuconazole a welcome addition to the triazole class of antifungals.


Assuntos
Antifúngicos , Nitrilas , Piridinas , Triazóis , Antifúngicos/farmacocinética , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Aspergilose/tratamento farmacológico , Candidemia/tratamento farmacológico , Candidíase Invasiva/tratamento farmacológico , Humanos , Mucormicose/tratamento farmacológico , Nitrilas/farmacocinética , Nitrilas/farmacologia , Nitrilas/uso terapêutico , Piridinas/farmacocinética , Piridinas/farmacologia , Piridinas/uso terapêutico , Triazóis/farmacocinética , Triazóis/farmacologia , Triazóis/uso terapêutico
17.
J Neurosci ; 31(41): 14794-9, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21994396

RESUMO

Huntington's disease (HD), caused by an expanded triplet repeat in the huntingtin (Htt) gene, results in extensive neuropathology, but study of the Htt gene in CNS development through gene knockout is problematic as the knockout leads to embryonic lethality in mice. Here, we report that the knockdown of Htt expression in neuroepithelial cells of neocortex results in disturbed cell migration, reduced proliferation, and increased cell death that is relatively specific to early neural development. In the cerebellum, however, Htt knockdown results in cell death but not perturbed migration. The cell death phenotype in cortex can be partially reversed with co-knockdown of Casp9, indicating that mitochondria-mediated cell apoptotic processes are involved in the neuronal death. The timing of knockdown during early development is also an important variable. These results indicate a spatial and temporal requirement for Htt expression in neural development. Although it is uncertain whether the loss of wild-type huntingtin function contributes to pathogenesis in Huntington's disease, these results clearly contraindicate the use of nonspecific knockdown of Htt as a therapeutic measure in HD, particularly in utero.


Assuntos
Encéfalo , Movimento Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Proteínas Nucleares/metabolismo , Animais , Encéfalo/citologia , Encéfalo/embriologia , Encéfalo/metabolismo , Bromodesoxiuridina/metabolismo , Caspase 3/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , Sobrevivência Celular , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Fluorescência Verde/genética , Proteína Huntingtina , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Gravidez , RNA Interferente Pequeno/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...