Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14125, 2024 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898087

RESUMO

Mechanical circulatory support (MCS) devices, including veno-arterial extracorporeal membrane oxygenation (VA-ECMO) and Impella, have been widely used for patients with cardiogenic shock (CS). However, hemodynamics with each device and combination therapy is not thoroughly understood. We aimed to elucidate the hemodynamics with MCS using a pulsatile flow model. Hemodynamics with Impella CP, VA-ECMO, and a combination of Impella CP and VA-ECMO were assessed based on the pressure and flow under support with each device and the pressure-volume loop of the ventricle model. The Impella CP device with CS status resulted in an increase in aortic pressure and a decrease in end-diastolic volume and end-diastolic pressure (EDP). VA-ECMO support resulted in increased afterload, leading to a significant increase in aortic pressure with an increase in end-systolic volume and EDP and decreasing venous reservoir pressure. The combination of Impella CP and VA-ECMO led to left ventricular unloading, regardless of increase in afterload. Hemodynamic support with Impella and VA-ECMO should be a promising combination for patients with severe CS.


Assuntos
Oxigenação por Membrana Extracorpórea , Coração Auxiliar , Hemodinâmica , Choque Cardiogênico , Choque Cardiogênico/terapia , Choque Cardiogênico/fisiopatologia , Hemodinâmica/fisiologia , Oxigenação por Membrana Extracorpórea/métodos , Humanos , Modelos Cardiovasculares , Fluxo Pulsátil
2.
Eur J Cardiothorac Surg ; 60(4): 859-864, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33760025

RESUMO

OBJECTIVES: Sinus plication has emerged as a promising tool that can lead to better stability in bicuspid aortic valve (BAV) repair. However, the mechanisms underlying the efficacy of this technique are unclear. We evaluated the hydrodynamic effect of sinus plication using the experimental pulsatile flow simulator and our original BAV model in vitro. METHODS: Based on the computed tomography data of a BAV patient who had undergone aortic valvuloplasty, a BAV model (group C, n = 6) was developed with bovine pericardium and vascular prosthesis (J-graft Shield Neo Valsalva 24 mm). We performed sinus plication (group SP, n = 6) in the BAV model and compared hydrodynamic data with the control model in the pulsatile flow simulator. Non-fused cusp angle, annulus diameter and effective height were measured by ultrasonography. RESULTS: The average flow was significantly increased in group SP compared to group C (4.24 ± 0.14 l/min vs 4.14 ± 0.15 l/min, respectively, P = 0.034). The mean transvalvular pressure gradient and regurgitant fraction were significantly decreased in group SP compared to group C (11.6 ± 4.3 mmHg vs 16.6 ± 5.0 mmHg, respectively, P = 0.009 and 14.1 ± 2.0% vs 17.4 ± 2.1%, respectively, P = 0.001). Ultrasound measurement indicated that non-fused cusp angle was significantly increased in group SP compared to group C (163.8° ± 9.2° vs 153.0° ± 4.6°, respectively, P = 0.012). CONCLUSIONS: Sinus plication in the BAV model significantly increased the commissural angle. It was effective in not only controlling regurgitation but also improving valve opening. These finding should be confirmed by evaluating cusp stress and/or long-term durability in the future studies.


Assuntos
Doença da Válvula Aórtica Bicúspide , Doenças das Valvas Cardíacas , Animais , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/cirurgia , Bovinos , Doenças das Valvas Cardíacas/diagnóstico por imagem , Doenças das Valvas Cardíacas/cirurgia , Humanos , Fluxo Pulsátil , Estudos Retrospectivos
3.
Sci Rep ; 11(1): 2066, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483580

RESUMO

The characteristics of aortic valvular outflow jet affect aortopathy in the bicuspid aortic valve (BAV). This study aimed to elucidate the effects of BAV morphology on the aortic valvular outflow jets. Morphotype-specific valve-devising apparatuses were developed to create aortic valve models. A magnetic resonance imaging-compatible pulsatile flow circulation system was developed to quantify the outflow jet. The eccentricity and circulation values of the peak systolic jet were compared among tricuspid aortic valve (TAV), three asymmetric BAVs, and two symmetric BAVs. The results showed mean aortic flow and leakage did not differ among the five BAVs (six samples, each). Asymmetric BAVs demonstrated the eccentric outflow jets directed to the aortic wall facing the smaller leaflets. In the asymmetric BAV with the smaller leaflet facing the right-anterior, left-posterior, and left-anterior quadrants of the aorta, the outflow jets exclusively impinged on the outer curvature of the ascending aorta, proximal arch, and the supra-valvular aortic wall, respectively. Symmetric BAVs demonstrated mildly eccentric outflow jets that did not impinge on the aortic wall. The circulation values at peak systole increased in asymmetric BAVs. The bicuspid symmetry and the position of smaller leaflet were determinant factors of the characteristics of aortic valvular outflow jet.


Assuntos
Valva Aórtica/patologia , Imageamento por Ressonância Magnética/métodos , Fluxo Pulsátil , Valva Aórtica/diagnóstico por imagem , Humanos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...