Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(32): 14838-14845, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35905381

RESUMO

We report herein the first example of a cytochrome P450-catalyzed oxidative carbon-carbon coupling process for a scalable entry into arylomycin antibiotic cores. Starting from wild-type hydroxylating cytochrome P450 enzymes and engineered Escherichia coli, a combination of enzyme engineering, random mutagenesis, and optimization of reaction conditions generated a P450 variant that affords the desired arylomycin core 2d in 84% assay yield. Furthermore, this process was demonstrated as a viable route for the production of the arylomycin antibiotic core on the gram scale. Finally, this new entry affords a viable, scalable, and practical route for the synthesis of novel Gram-negative antibiotics.


Assuntos
Antibacterianos , Sistema Enzimático do Citocromo P-450 , Antibacterianos/farmacologia , Carbono , Catálise , Sistema Enzimático do Citocromo P-450/metabolismo , Escherichia coli/metabolismo , Estresse Oxidativo
2.
FEBS Lett ; 588(1): 105-10, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24269679

RESUMO

The cytochrome P450 RauA from Rhodococcus erythropolis JCM 6824 catalyzes the hydroxylation of a nitrogen atom in the quinolone ring of aurachin, thereby conferring strong antibiotic activity on the aurachin alkaloid. Here, we report the crystal structure of RauA in complex with its substrate, a biosynthetic intermediate of aurachin RE. Clear electron density showed that the quinolone ring is oriented parallel to the porphyrin plane of the heme cofactor, while the farnesyl chain curls into a U-shape topology and is buried inside the solvent-inaccessible hydrophobic interior of RauA. The nearest atom from the heme iron is the quinolone nitrogen (4.3Å), which is consistent with RauA catalyzing the N-hydroxylation of the quinolone ring to produce mature aurachin RE.


Assuntos
Proteínas de Bactérias/química , Sistema Enzimático do Citocromo P-450/química , Hidroxilaminas/química , Quinolinas/química , Quinolonas/química , Alcaloides/química , Alcaloides/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Cristalografia por Raios X , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Genes Essenciais , Hidroxilaminas/metabolismo , Hidroxilação , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Filogenia , Ligação Proteica , Estrutura Terciária de Proteína , Quinolinas/metabolismo , Quinolonas/metabolismo , Rhodococcus/enzimologia , Rhodococcus/genética , Rhodococcus/metabolismo , Homologia de Sequência de Aminoácidos , Espectrometria de Fluorescência , Especificidade por Substrato
3.
Chembiochem ; 14(17): 2284-91, 2013 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-24115473

RESUMO

Vitamin D3 hydroxylase (Vdh) from Pseudonocardia autotrophica is a cytochrome P450 monooxygenase that catalyzes the two-step hydroxylation of vitamin D3 (VD3 ) to produce 25-hydroxyvitamin D3 (25(OH)VD3 ) and 1α,25-dihydroxyvitamin D3 (1α,25(OH)2 VD3 ). These hydroxylated forms of VD3 are useful as pharmaceuticals for the treatment of conditions associated with VD3 deficiency and VD3 metabolic disorder. Herein, we describe the creation of a highly active T107A mutant of Vdh by engineering the putative ferredoxin-binding site. Crystallographic and kinetic analyses indicate that the T107A mutation results in conformational change from an open to a closed state, thereby increasing the binding affinity with ferredoxin. We also report the efficient biocatalytic synthesis of 25(OH)VD3 , a promising intermediate for the synthesis of various hydroxylated VD3 derivatives, by using nisin-treated Rhodococcus erythropolis cells containing VdhT107A . The gene-expression cassette encoding Bacillus megaterium glucose dehydrogenase-IV was inserted into the R. erythropolis chromosome and expressed to avoid exhaustion of NADH in a cytoplasm during bioconversion. As a result, approximately 573 µg mL(-1) 25(OH)VD3 was successfully produced by a 2 h bioconversion.


Assuntos
25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Biocatálise , Calcifediol/biossíntese , Ferredoxinas/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/química , Actinomycetales/enzimologia , Actinomycetales/genética , Sítios de Ligação/genética , Calcifediol/química , Cristalografia por Raios X , Modelos Moleculares , Mutação
4.
Chembiochem ; 14(9): 1085-93, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23677853

RESUMO

Aurachin RE is a prenylated quinoline antibiotic that was first isolated from the genus Rhodococcus. It shows potent antibacterial activity against a variety of Gram-positive bacteria. Here we have identified a minimal biosynthesis gene cluster for aurachin RE in Rhodococcus erythropolis JCM 6824 by using random transposon mutagenesis and heterologous production. The Rhodococcus aurachin (rau) gene cluster consists of genes encoding cytochrome P450 (rauA), prenyltransferase, polyketide synthase, and farnesyl pyrophosphate synthase, as well as others including genes involved in regulation and transport. Markerless gene disruption of rauA resulted in the complete loss of aurachin RE production and in the accumulation of a new aurachin derivative lacking the N-hydroxy group. When the recombinant RauA was expressed in Escherichia coli, it catalyzed N-hydroxylation of the derivative to form aurachin RE. This study establishes the biosynthetic pathway of aurachin RE and provides experimental evidence for the role of P450 RauA in catalyzing N-hydroxylation of the quinoline ring, which is indispensable for the antibacterial activity of aurachin RE.


Assuntos
Antibacterianos/biossíntese , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Hidroxilaminas/metabolismo , Quinolinas/metabolismo , Quinolonas/metabolismo , Antibacterianos/química , Proteínas de Bactérias/genética , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/genética , Hidroxilaminas/química , Hidroxilação , Família Multigênica , Quinolinas/química , Quinolonas/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Rhodococcus/genética , Rhodococcus/metabolismo
5.
Proc Natl Acad Sci U S A ; 110(6): 2105-10, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23345451

RESUMO

Although many of the frequently used pluripotency biomarkers are glycoconjugates, a glycoconjugate-based exploration of novel cellular biomarkers has proven difficult due to technical difficulties. This study reports a unique approach for the systematic overview of all major classes of oligosaccharides in the cellular glycome. The proposed method enabled mass spectrometry-based structurally intensive analyses, both qualitatively and quantitatively, of cellular N- and O-linked glycans derived from glycoproteins, glycosaminoglycans, and glycosphingolipids, as well as free oligosaccharides of human embryonic stem cells (hESCs), induced pluripotent stem cells (hiPSCs), and various human cells derived from normal and carcinoma cells. Cellular total glycomes were found to be highly cell specific, demonstrating their utility as unique cellular descriptors. Structures of glycans of all classes specifically observed in hESCs and hiPSCs tended to be immature in general, suggesting the presence of stem cell-specific glycosylation spectra. The current analysis revealed the high similarity of the total cellular glycome between hESCs and hiPSCs, although it was suggested that hESCs are more homogeneous than hiPSCs from a glycomic standpoint. Notably, this study enabled a priori identification of known pluripotency biomarkers such as SSEA-3, -4, and -5 and Tra-1-60/81, as well as a panel of glycans specifically expressed by hESCs and hiPSCs.


Assuntos
Biomarcadores/metabolismo , Metabolismo dos Carboidratos , Glicômica/métodos , Animais , Biomarcadores/química , Linhagem Celular , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Cricetinae , Células-Tronco Embrionárias/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Metaboloma , Estrutura Molecular , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
6.
FEBS J ; 279(17): 3264-75, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22804868

RESUMO

Bacillus megaterium IAM 1030 (Bacillus sp. JCM 20016) possesses four d-glucose 1-dehydrogenase isozymes (BmGlcDH-I, -II, -III and -IV) that belong to the short-chain dehydrogenase/reductase superfamily. The BmGlcDHs are currently used for a clinical assay to examine blood glucose levels. Of these four isozymes, BmGlcDH-IV has relatively high thermostability and catalytic activity, but the disadvantage of its broad substrate specificity remains to be overcome. Here, we describe the crystal structures of BmGlcDH-IV in ligand-free, NADH-bound and ß-D-glucose-bound forms to a resolution of 2.0 Å. No major conformational differences were found among these structures. The structure of BmGlcDH-IV in complex with ß-D-glucose revealed that the carboxyl group at the C-terminus, derived from a neighboring subunit, is inserted into the active-site pocket and directly interacts with ß-D-glucose. A site-directed mutagenic study showed that destabilization of the BmGlcDH-IV C-terminal region by substitution with more bulky and hydrophobic amino acid residues greatly affects the activity of the enzyme, as well as its thermostability and substrate specificity. Of the six mutants created, the G259A variant exhibited the narrowest substrate specificity, whilst retaining comparable catalytic activity and thermostability to the wild-type enzyme.


Assuntos
Bacillus megaterium/enzimologia , Glucose 1-Desidrogenase/metabolismo , Glucose/metabolismo , Glucose 1-Desidrogenase/química , Glucose 1-Desidrogenase/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Especificidade por Substrato
7.
Proc Natl Acad Sci U S A ; 109(1): 149-54, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22187461

RESUMO

Proteasomes execute the degradation of most cellular proteins. Although the 20S core particle (CP) has been studied in great detail, the structure of the 19S regulatory particle (RP), which prepares ubiquitylated substrates for degradation, has remained elusive. Here, we report the crystal structure of one of the RP subunits, Rpn6, and we describe its integration into the cryo-EM density map of the 26S holocomplex at 9.1 Å resolution. Rpn6 consists of an α-solenoid-like fold and a proteasome COP9/signalosome eIF3 (PCI) module in a right-handed suprahelical configuration. Highly conserved surface areas of Rpn6 interact with the conserved surfaces of the Pre8 (alpha2) and Rpt6 subunits from the alpha and ATPase rings, respectively. The structure suggests that Rpn6 has a pivotal role in stabilizing the otherwise weak interaction between the CP and the RP.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Complexos Multiproteicos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Subunidades Proteicas/metabolismo , Sequência de Aminoácidos , Animais , Sequência Conservada , Cristalografia por Raios X , Proteínas de Drosophila/química , Modelos Moleculares , Dados de Sequência Molecular , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/ultraestrutura , Ligação Proteica , Subunidades Proteicas/química , Schizosaccharomyces/enzimologia , Soluções , Propriedades de Superfície
8.
Biochem Biophys Res Commun ; 405(3): 393-8, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21237135

RESUMO

Vitamin D3 (VD3) is a fat-soluble prohormone in mammals. VD3 is inert and must be activated by hydroxylation at the C-25 and C-1α positions to exert its biological activity. We recently accomplished the bioconversion of VD3 to 25(OH)VD3 with a recombinant strain of Rhodococcus erythropolis and found that the permeability of VD3 into the cytoplasm may be the rate-limiting step of 25(OH)VD3 production (Sallam et al., 2010). When the cells were treated with the lipid II-targeting lantibiotic nisin, the permeability of green chemiluminescent cyclodextrin (GCCD), which is used as a model substrate instead of VD3-partially methylated-ß-cyclodextrin (PMCD) complex, was drastically induced. Nisin also induced VD3 hydroxylation, and the rate was correlated with the expression levels of Vdh and its redox partner proteins. In the bioconversion reaction, the stability of the redox partner proteins and the additional NADH-regenerating system are crucial for VD3 hydroxylation. The degradation rate of the [2Fe-2S] cluster of ferredoxin ThcC from R. erythropolis NI86/21 is faster than that of AciB from Acinetobacter sp. OC4. Therefore, the nisin-treated R. erythropolis cells coexpressing Vdh and AciBC (1176.5 µg) exhibited much greater 25(OH)VD3 production than the cells coexpressing Vdh and ThcCD (431.7 µg) after four consecutive 16 h reactions. These results suggest that nisin forms nisin-lipid II pore complexes in the Rhodococcus membrane that increase the accessibility of VD3-PMCD complexes to the inside of the cells. Furthermore, nisin-treated Rhodococcus cells can be utilized for the bioconversion of other fat-soluble chemicals.


Assuntos
Calcifediol/biossíntese , Colecalciferol/metabolismo , Nisina/farmacologia , Rhodococcus/efeitos dos fármacos , Ciclodextrinas/metabolismo , Citosol/metabolismo , Permeabilidade/efeitos dos fármacos , Rhodococcus/genética , Rhodococcus/metabolismo , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurâmico/química , Uridina Difosfato Ácido N-Acetilmurâmico/metabolismo
9.
J Biol Chem ; 285(41): 31193-201, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20667833

RESUMO

Vitamin D(3) hydroxylase (Vdh) isolated from actinomycete Pseudonocardia autotrophica is a cytochrome P450 (CYP) responsible for the biocatalytic conversion of vitamin D(3) (VD(3)) to 1α,25-dihydroxyvitamin D(3) (1α,25(OH)(2)VD(3)) by P. autotrophica. Although its biological function is unclear, Vdh is capable of catalyzing the two-step hydroxylation of VD(3), i.e. the conversion of VD(3) to 25-hydroxyvitamin D(3) (25(OH)VD(3)) and then of 25(OH)VD(3) to 1α,25(OH)(2)VD(3), a hormonal form of VD(3). Here we describe the crystal structures of wild-type Vdh (Vdh-WT) in the substrate-free form and of the highly active quadruple mutant (Vdh-K1) generated by directed evolution in the substrate-free, VD(3)-bound, and 25(OH)VD(3)-bound forms. Vdh-WT exhibits an open conformation with the distal heme pocket exposed to the solvent both in the presence and absence of a substrate, whereas Vdh-K1 exhibits a closed conformation in both the substrate-free and substrate-bound forms. The results suggest that the conformational equilibrium was largely shifted toward the closed conformation by four amino acid substitutions scattered throughout the molecule. The substrate-bound structure of Vdh-K1 accommodates both VD(3) and 25(OH)VD(3) but in an anti-parallel orientation. The occurrence of the two secosteroid binding modes accounts for the regioselective sequential VD(3) hydroxylation activities. Moreover, these structures determined before and after directed evolution, together with biochemical and spectroscopic data, provide insights into how directed evolution has worked for significant enhancement of both the VD(3) 25-hydroxylase and 25(OH)VD(3) 1α-hydroxylase activities.


Assuntos
Proteínas de Bactérias/química , Colecalciferol/química , Modelos Moleculares , Pseudomonas/enzimologia , Esteroide Hidroxilases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Calcitriol/química , Calcitriol/genética , Calcitriol/metabolismo , Colecalciferol/genética , Colecalciferol/metabolismo , Cristalografia por Raios X , Mutação , Estrutura Secundária de Proteína , Pseudomonas/genética , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo
10.
J Org Chem ; 74(4): 1541-8, 2009 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-19161275

RESUMO

The presence of the geranylgeranyl diphosphate synthase (GGS) gene is a common feature of gene clusters for diterpene biosynthesis. We demonstrated identification of a diterpene gene cluster using homology-based PCR of GGS genes and the subsequent genome walking in the fungus Phomopsis amygdali N2. Structure determination of a novel diterpene hydrocarbon phomopsene provided by enzymatic synthesis with the recombinant terpene synthase PaPS and screening of fungal broth extracts with reference to characteristic NMR signals of phomopsene allowed us to isolate a new diterpene, methyl phomopsenonate. The versatility of the gene-based screening of unidentified diterpenes is discussed in regard to fungal genomic data.


Assuntos
Ascomicetos/genética , Ascomicetos/metabolismo , Diterpenos/análise , Diterpenos/metabolismo , Genes Fúngicos , Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Ascomicetos/enzimologia , Clonagem Molecular , Dimetilaliltranstransferase/metabolismo , Diterpenos/química , Genoma Fúngico/genética , Espectroscopia de Ressonância Magnética , Família Multigênica , Estrutura Terciária de Proteína , Análise de Sequência de DNA
11.
Proteins ; 74(4): 801-7, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19089950

RESUMO

The D-aldohexose dehydrogenase from the thermoacidophilic archaeon Thermoplasma acidophilum (AldT) is a homotetrameric enzyme that catalyzes the oxidation of several D-aldohexoses, especially D-mannose. AldT comprises a unique C-terminal tail motif (residues 247-255) that shuts the active-site pocket of the neighboring subunit. The functional role of the C-terminal tail of AldT has been investigated using mutational and crystallographic analyses. A total of four C-terminal deletion mutants (Delta254, Delta253, Delta252, and Delta249) and two site-specific mutants (Y86G and P254G) were expressed by Escherichia coli and purified. Enzymatic characterization of these mutants revealed that the C-terminal tail is a requisite and that the interaction between Tyr86 and Pro254 is critical for enzyme activity. The crystal structure of the Delta249 mutant was also determined. The structure showed that the active-site loops undergo a significant conformational change, which leads to the structural deformation of the substrate-binding pocket.


Assuntos
Desidrogenases de Carboidrato/química , Subunidades Proteicas/química , Thermoplasma/enzimologia , Sítios de Ligação , Desidrogenases de Carboidrato/genética , Desidrogenases de Carboidrato/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Prolina/genética , Prolina/metabolismo , Conformação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Especificidade por Substrato , Tirosina/genética , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...