Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cureus ; 11(9): e5795, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31728242

RESUMO

After decades of research on memory formation and retention, we are still searching for the definite concept and process behind neuroplasticity. This review article will address the relationship between synapses, memory formation, and memory retention and their genetic correlations. In the last six decades, there have been enormous improvements in the neurochemistry domain, especially in the area of neural plasticity. In the central nervous system, the complexity of the synapses between neurons allows communication among them. It is believed that each time certain types of sensory signals pass through sequences of synapses, these synapses can transmit the same signals more efficiently the following time. The concept of Hebb synapse has provided revolutionary thinking about the nature of neural mechanisms of learning and memory formation. To improve the local circuitry for memory formation and behavioral change and stabilization in the mammalian central nervous system, long-term potentiation and long-term depression are the crucial components of Hebbian plasticity. In this review, we will be discussing the role of glutamatergic synapses, engram cells, cytokines, neuropeptides, neurosteroids and many aspects, covering the synaptic basis of memory. Lastly, we have tried to cover the etiology of neurodegenerative disorders due to synaptic dysfunction. To enhance pharmacological interventions for neurodegenerative diseases, we need more research in this direction. With the help of technology, and a better understanding of the disease etiology, not only can we identify the missing pieces of synaptic functions, but we might also cure or even prevent serious neurodegenerative diseases like Alzheimer's disease (AD).

2.
Cancer Chemother Pharmacol ; 74(4): 787-98, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25107568

RESUMO

PURPOSE: PS121912 has been developed as selective vitamin D receptor (VDR)-coregulator inhibitor starting from a high throughput screening campaign to identify new agents that modulate VDR without causing hypercalcemia. Initial antiproliferative effects of PS121912 were observed that are characterized herein to enable future in vivo investigation with this molecule. METHODS: Antiproliferation and apoptosis were determined using four different cancer cell lines (DU145, Caco2, HL-60 and SKOV3) in the presence of PS121912, 1,25-(OH)2D3, or a combination of 1,25-(OH)2D3 and PS121912. VDR si-RNA was used to identify the role of VDR during this process. The application of ChIP enabled us to determine the involvement of coregulator recruitment during transcription, which was investigated by RT-PCR with VDR target genes and those affiliated with cell cycle progression. Translational changes of apoptotic proteins were determined with an antibody array. The preclinical characterization of PS121912 includes the determination of metabolic stability and CYP3A4 inhibition. RESULTS: PS121912 induced apoptosis in all four cancer cells, with HL-60 cells being the most sensitive. At sub-micromolar concentrations, PS121912 amplified the growth inhibition of cancer cells caused by 1,25-(OH)2D3 without being antiproliferative by itself. A knockout study with VDR si-RNA confirmed the mediating role of VDR. VDR target genes induced by 1,25-(OH)2D3 were down-regulated with the co-treatment of PS121912. This process was highly dependent on the recruitment of coregulators that in case of CYP24A1 was SRC2. The combination of PS121912 and 1,25-(OH)2D3 reduced the presence of SRC2 and enriched the occupancy of corepressor NCoR at the promoter site. E2F transcription factors 1 and 4 were down-regulated in the presence of PS121912 and 1,25-(OH)2D3 that in turn reduced the transcription levels of cyclin A and D, thus arresting HL-60 cells in the S or G2/M phase. In addition, proteins with hematopoietic functions such as cyclin-dependent kinase 6, histone deacetylase 9 and transforming growth factor beta 2 and 3 were down-regulated as well. Elevated levels of P21 and GADD45, in concert with cyclin D1, also mediated the antiproliferative response of HL-60 in the presence of 1,25-(OH)2D3 and PS121912. Studies at higher concentration of P121912 identified a VDR-independent pathway of antiproliferation that included the enzymatic and transcriptional activation of caspase 3/7. CONCLUSION: Overall, we conclude that PS121912 behaves like a VDR antagonist at low concentrations but interacts with more targets at higher concentrations leading to apoptosis mediated by caspase 3/7 activation. In addition, PS121912 showed an acceptable metabolic stability to enable in vivo cancer studies.


Assuntos
Antimetabólitos Antineoplásicos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Receptores de Calcitriol , Antimetabólitos Antineoplásicos/metabolismo , Antimetabólitos Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Células CACO-2 , Caspases Efetoras/metabolismo , Citocromo P-450 CYP3A/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Ativação Enzimática/efeitos dos fármacos , Células HL-60 , Humanos , Receptores de Calcitriol/antagonistas & inibidores , Receptores de Calcitriol/metabolismo , Ativação Transcricional/efeitos dos fármacos , Células Tumorais Cultivadas
3.
Pediatr Obes ; 9(5): e80-90, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23761378

RESUMO

OBJECTIVES: Monoamine oxidase A (MAOA) modulates metabolism of serotonin and dopamine metabolism, neurotransmitters involved in regulation of appetite and food intake. The gene coding for MAOA contains a 30-bp tandem repeat (uVNTR) polymorphism in its promoter region that has been previously identified to be associated with obesity with mixed findings in the literature. Our goals were to replicate the population effects of this functional polymorphism on obesity risk, and to further explore gender differences and interaction effects with negative stressors. METHODS: Analyses were conducted with data on genotypes, measured weight and height, and self-reported behavioural characteristics among 1101 Chinese adolescents 11-15 years old living in Wuhan, China. RESULTS: Girls with the high-activity allele had significantly lower body mass index (BMI; ß = -0.25 ± 0.98, P = 0.011) compared to those with the low activity allele. Experience of negative familial stressors (e.g., death or illness of family members, hit or scolded by parents and increased quarrelling with parents, parents argued frequently) significantly weakened this protective genetic effect on BMI (P for interaction = 0.043). Stratified analyses showed a significant protective genetic effect on BMI only within the stratum of low stress level (ß = -0.44 ± 0.14, P = 0.002). No similar effect was observed among boys. CONCLUSIONS: Our findings confirm the genetic effects of MAOA uVNTR polymorphism on BMI in a Chinese adolescent population and suggest potential genetic interactions with negative familial stressors.


Assuntos
Povo Asiático/genética , Índice de Massa Corporal , Repetições Minissatélites/genética , Monoaminoxidase/genética , Relações Pais-Filho , Polimorfismo de Nucleotídeo Único , Adolescente , Alelos , Povo Asiático/psicologia , Criança , China , Feminino , Genótipo , Humanos , Acontecimentos que Mudam a Vida , Masculino , Monoaminoxidase/metabolismo , Regiões Promotoras Genéticas , Ensaios Clínicos Controlados Aleatórios como Assunto , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...