Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(50): 47120-47128, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36570269

RESUMO

Supported platinum nanoparticles are currently the most functional catalysts applied in commercial chemical processes. Although investigations have been performed to improve the dispersion and thermal stability of Pt particles, it is challenging to apply amorphous silica supports to these systems owing to various Pt species derived from the non-uniform surface structure of the amorphous support. Herein, we report the synthesis and characterization of amorphous silica-supported Pt nanoparticles from (cod)Pt-disilicate complex (cod = 1,5-cyclooctadiene), which forms bis-grafted surface Pt species regardless of surface heterogeneity. The synthesized Pt nanoparticles were highly dispersible and had higher hydrogenation activity than those prepared by the impregnation method, irrespective of the calcination and reduction temperatures. The high catalytic activity of the catalyst prepared at low temperatures (such as 150 °C) was attributed to the formation of Pt nanoparticles triggered by the reduction of cod ligands under H2 conditions, whereas that of the catalyst prepared at high temperatures (up to 450 °C) was due to the modification of the SiO2 surface by grafting of the (cod)Pt-disilicate complex.

2.
Chem Commun (Camb) ; 57(98): 13301-13304, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34812445

RESUMO

The paired Al species pre-formed in Al-rich amorphous aluminosilicates were transcribed into high-silica CHA-type zeolite frameworks under hydrothermal conditions, which offers a new approach to creating paired Al sites in zeolite frameworks. This Al-pair-rich CHA exhibited a higher Sr2+ uptake than the control CHA zeolite synthesized by the conventional procedure.

3.
ACS Omega ; 6(8): 5176-5182, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33681559

RESUMO

Mordenite (MOR)-type zeolites with a Si/Al molar ratio of up to 13 with crystallite sizes of ca. 60 nm were successfully synthesized from Al-rich aluminosilicates with a Si/Al ratio of 2 and additional SiO2 under seed-assisted hydrothermal conditions for 6 h or longer without any organic structure-directing agents (OSDAs). In stark contrast, under the same hydrothermal conditions for 6 h, control experiments using starting reagent(s), such as Al-poor aluminosilicate, pure SiO2, tetraethyl orthosilicate, and Al(NO3)3, all of which are typically employed for zeolite synthesis, failed to yield MOR-type zeolites. The penta-coordinated Al species, which are present in Al-rich aluminosilicates and are more reactive than the tetra- and hexa-coordinated Al species typically found in alumina and Al-poor aluminosilicates, played a decisive role in the OSDA-free synthesis of MOR-type zeolites.

4.
Chem Commun (Camb) ; 55(20): 2896-2899, 2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30702094

RESUMO

The effect of reaction conditions for direct oxidation of methane to methanol over Fe-MFI zeolite with H2O2 has been investigated. Sulfolane has been proved to be an efficient solvent for liquid-phase methane oxidation. A sulfolane/water mixture with an appropriate proportion led to an extremely high methanol production with a high selectivity.

5.
Phys Chem Chem Phys ; 19(9): 6508-6518, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28197567

RESUMO

The positions of aluminum (Al) atoms in SSZ-35 together with the characteristics of the generated protons were investigated by 27Al multiple quantum magic-angle spinning (MQ-MAS), 29Si MAS, and 1H MAS NMR data analyses accompanied by a variable temperature 1H MAS NMR analysis. The origin of the acidic -OH groups (Brønsted acid sites) generated by introducing Al atoms into the T sites was investigated and the T sites introduced into the Al atoms were revealed. To further determine the catalytic properties of the acidic protons generated in SSZ-35, the influence of the concentration of the Al atoms on the catalytic activity and selectivity during the transformation of toluene was examined.

6.
Phys Chem Chem Phys ; 17(7): 5014-32, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25598271

RESUMO

The conversion of n-pentane was carried out to examine the effects of reaction conditions on changes in product selectivities at 823 K, using zeolites with 10- and 12-membered rings. We also investigated the influence of the pore structure of these zeolites on their catalytic activities for both protolysis and hydride transfer reactions. In the first half of this work, we examined the influence of acidic proton concentration and n-pentane pressure on the reaction rates for protolysis and hydride transfer reactions using ZSM-5 zeolites. The rates of hydride transfer reactions were more influenced by pentane pressure compared to protolysis reactions, and were proportional to the square of n-pentane pressure and the concentration of acidic protons. In the second half of this work, the influence of the zeolite pore structure on changes in product selectivities with n-pentane conversion and that on the rates of protolysis and the hydride transfer reactions were revealed using various zeolites with 10- and 12-membered rings. The catalytic activities of zeolites for the protolysis and hydride transfer reactions were influenced more by the spatial volume of the zeolite cavity than the acid strength of protons on the zeolite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...