Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Xenobiotica ; 51(9): 983-994, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34227923

RESUMO

Chimeric mice are immunodeficient mice in which the majority of the hepatic parenchymal cells are replaced with human hepatocytes.Following intravenous administration of 24 model compounds to control and chimeric mice, human hepatic clearance (CLh) was predicted using the single-species allometric scaling (SSS) method. Predictability of the chimeric mice was better than that of the control mice.Human CLh was predicted by the physiologically based scaling (PBS) method, wherein observed CLh in chimeric mice was first converted to intrinsic CLh (CLh,int). As the liver of chimeric mice contains remaining mouse hepatocytes, CLh,int was corrected by in vitro CLh ratios of the mouse to human hepatocytes according to their hepatocyte replacement index. Further, predicted human CLh was calculated based on an assumption that CLh,int in chimeric mice normalised for their liver weight was equal to CLh,int per liver weight in humans. Consequently, better prediction performance was observed with the use of the PBS method than the SSS method.SSS method is an empirical method, and the effects of coexisting mouse metabolism cannot be avoided. However, the PBS method with in vitro CLh correction might be a potential solution and may expand the application of chimeric mice in new drug development.


Assuntos
Preparações Farmacêuticas , Animais , Quimera , Hepatócitos , Humanos , Fígado/metabolismo , Taxa de Depuração Metabólica , Camundongos , Preparações Farmacêuticas/metabolismo
2.
Xenobiotica ; 51(4): 479-493, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33455494

RESUMO

Common marmosets (Callithrix jacchus) are small non-human primates that genetically lack cytochrome P450 2C9 (CYP2C9). Polymorphic marmoset CYP2C19 compensates by mediating oxidations of typical human CYP2C9/19 substrates.Twenty-four probe substrates were intravenously administered in combinations to marmosets assigned to extensive or poor metaboliser (PM) groups by CYP2C19 genotyping. Eliminations from plasma of cilomilast, phenytoin, repaglinide, tolbutamide, and S-warfarin in the CYP2C19 PM group were significantly slow; these drugs are known substrates of human CYP2C8/9/19.Human total clearance values and volumes of distribution of the 24 test compounds were extrapolated using single-species allometric scaling with experimental data from marmosets and found to be mostly comparable with the reported values.Human total clearance values and volumes of distribution of 15 of the 24 test compounds similarly extrapolated using reported data sets from cynomolgus or rhesus monkeys were comparable to the present predicted results, especially to those based on data from PM marmosets.These results suggest that single-species allometric scaling using marmosets, being small, has advantages over multiple-species-based allometry and could be applicable for pharmacokinetic predictions at the discovery stage of drug development.


Assuntos
Callithrix , Omeprazol , Animais , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C9 , Genótipo , Humanos , Varfarina
3.
J Clin Invest ; 131(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33048844

RESUMO

A growing number of long noncoding RNAs (lncRNAs) have emerged as vital metabolic regulators. However, most human lncRNAs are nonconserved and highly tissue specific, vastly limiting our ability to identify human lncRNA metabolic regulators (hLMRs). In this study, we established a pipeline to identify putative hLMRs that are metabolically sensitive, disease relevant, and population applicable. We first progressively processed multilevel human transcriptome data to select liver lncRNAs that exhibit highly dynamic expression in the general population, show differential expression in a nonalcoholic fatty liver disease (NAFLD) population, and respond to dietary intervention in a small NAFLD cohort. We then experimentally demonstrated the responsiveness of selected hepatic lncRNAs to defined metabolic milieus in a liver-specific humanized mouse model. Furthermore, by extracting a concise list of protein-coding genes that are persistently correlated with lncRNAs in general and NAFLD populations, we predicted the specific function for each hLMR. Using gain- and loss-of-function approaches in humanized mice as well as ectopic expression in conventional mice, we validated the regulatory role of one nonconserved hLMR in cholesterol metabolism by coordinating with an RNA-binding protein, PTBP1, to modulate the transcription of cholesterol synthesis genes. Our work overcame the heterogeneity intrinsic to human data to enable the efficient identification and functional definition of disease-relevant human lncRNAs in metabolic homeostasis.


Assuntos
Bases de Dados de Ácidos Nucleicos , Homeostase/genética , Hepatopatia Gordurosa não Alcoólica , RNA Longo não Codificante , Animais , Humanos , Camundongos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
4.
Drug Metab Pharmacokinet ; 35(4): 389-396, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32690433

RESUMO

Prediction of human pharmacokinetics is important in the preclinical stage. Values for total clearance of compounds from plasma should be one of the most important pharmacokinetic parameters for predictions. Although several physiological and empirical methods including single-species allometry for prediction of values for human clearance of compounds using humanized-liver mice have been reported, further improvement of prediction accuracies would be still expected. To optimize these approaches, we proposed methods for unbound intrinsic clearance in virtually 100% humanized-liver mouse by incorporating unbound plasma fractions of compounds in differently humanized-liver mice. Comparisons of prediction accuracies of values for human clearance of 15 model compounds were performed among our current physiological and previously reported models and single-species allometry using humanized-liver mice. Incorporation of the actual unbound plasma fractions of compounds and correction of residual mice hepatocyte in humanized-liver mice showed comparable prediction accuracy to that by single-species allometry. After exclusion of 3 compounds with large species differences in values of clearance and unbound plasma fractions between mice and humans out of 15 compounds, prediction accuracies were improved in the methods investigated. The previously and present reported physiological methods could show the good prediction accuracy of values for clearance of drugs from plasma.


Assuntos
Fígado/metabolismo , Preparações Farmacêuticas/sangue , Preparações Farmacêuticas/metabolismo , Acetamidas/sangue , Acetamidas/farmacocinética , Albuterol/sangue , Albuterol/farmacocinética , Animais , Carbamatos/sangue , Carbamatos/farmacocinética , Cromatografia Líquida , Diazepam/sangue , Diazepam/farmacocinética , Diclofenaco/sangue , Diclofenaco/farmacocinética , Digitoxina/sangue , Digitoxina/farmacocinética , Humanos , Itraconazol/sangue , Itraconazol/farmacocinética , Cetoprofeno/sangue , Cetoprofeno/farmacocinética , Fígado/química , Taxa de Depuração Metabólica , Camundongos , Camundongos Transgênicos , Naproxeno/sangue , Naproxeno/farmacocinética , Fenitoína/sangue , Fenitoína/farmacocinética , Piperidinas/sangue , Piperidinas/farmacocinética , Pravastatina/sangue , Pravastatina/farmacocinética , Pirimidinas/sangue , Pirimidinas/farmacocinética , Quinidina/sangue , Quinidina/farmacocinética , Espectrometria de Massas em Tandem , Telmisartan/sangue , Telmisartan/farmacocinética , Terfenadina/análogos & derivados , Terfenadina/sangue , Terfenadina/farmacocinética , Verapamil/sangue , Verapamil/farmacocinética
5.
Nat Commun ; 11(1): 45, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31896749

RESUMO

Unlike protein-coding genes, the majority of human long non-coding RNAs (lncRNAs) are considered non-conserved. Although lncRNAs have been shown to function in diverse pathophysiological processes in mice, it remains largely unknown whether human lncRNAs have such in vivo functions. Here, we describe an integrated pipeline to define the in vivo function of non-conserved human lncRNAs. We first identify lncRNAs with high function potential using multiple indicators derived from human genetic data related to cardiometabolic traits, then define lncRNA's function and specific target genes by integrating its correlated biological pathways in humans and co-regulated genes in a humanized mouse model. Finally, we demonstrate that the in vivo function of human-specific lncRNAs can be successfully examined in the humanized mouse model, and experimentally validate the predicted function of an obesity-associated lncRNA, LINC01018, in regulating the expression of genes in fatty acid oxidation in humanized livers through its interaction with RNA-binding protein HuR.


Assuntos
Fígado/fisiologia , RNA Longo não Codificante/fisiologia , Animais , Sequência de Bases , Sequência Conservada , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo , Epigênese Genética , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Estudo de Associação Genômica Ampla , Hepatócitos/fisiologia , Humanos , Fígado/metabolismo , Hepatopatias/genética , Hepatopatias/metabolismo , Masculino , Metiltransferases/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/genética , Obesidade/metabolismo , Locos de Características Quantitativas
6.
Xenobiotica ; 48(2): 117-123, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28145791

RESUMO

1. Benzydamine is used clinically as a nonsteroidal anti-inflammatory drug in oral rinses and is employed in preclinical research as a flavin-containing monooxygenase (FMO) probe substrate. In this study, plasma concentrations of benzydamine and its primary N-oxide and N-demethylated metabolites were investigated in control TK-NOG mice, in humanized-liver mice, and in mice whose liver cells had been ablated with ganciclovir. 2. Following oral administration of benzydamine (10 mg/kg) in humanized-liver TK-NOG mice, plasma concentrations of benzydamine N-oxide were slightly higher than those of demethyl benzydamine. In contrast, in control and ganciclovir-treated TK-NOG mice, concentrations of demethyl benzydamine were slightly higher than those of benzydamine N-oxide. 3. Simulations of human plasma concentrations of benzydamine and its N-oxide were achieved using simplified physiologically based pharmacokinetic models based on data from control TK-NOG mice and from reported benzydamine concentrations after low-dose administration in humans. Estimated clearance rates based on data from humanized-liver and ganciclovir-treated TK-NOG mice were two orders magnitude high. 4. The pharmacokinetic profiles of benzydamine were different for control and humanized-liver TK-NOG mice. Humanized-liver mice are generally accepted human models; however, drug oxidation in mouse kidney might need to be considered when probe substrates undergo FMO-dependent drug oxidation in mouse liver and kidney.


Assuntos
Anti-Inflamatórios não Esteroides/metabolismo , Benzidamina/metabolismo , Animais , Anti-Inflamatórios não Esteroides/sangue , Benzidamina/análogos & derivados , Benzidamina/sangue , Humanos , Metaboloma , Camundongos , Oxigenases/metabolismo
7.
Mol Reprod Dev ; 76(4): 342-50, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18932201

RESUMO

Oct-4 is essential for normal embryonic development, and abnormal Oct-4 expression in cloned embryos contributes to cloning inefficiency. However, the causes of abnormal Oct-4 expression in cloned embryos are not well understood. As DNA methylation in regulatory regions is known to control transcriptional activity, we investigated the methylation status of three transcriptional regulatory regions of the Oct-4 gene in cloned mouse embryos--the distal enhancer (DE), the proximal enhancer (PE), and the promoter regions. We also investigated the level of Oct-4 gene expression in cloned embryos. Immunochemistry revealed that 85% of cloned blastocysts expressed Oct-4 in both trophectoderm and inner cell mass cells. DNA methylation analysis revealed that the PE region methylation was greater in cloned morulae than in normal morulae. However, the same region was less methylated in cloned blastocysts than in normal blastocysts. We found abnormal expression of de novo methyltransferase 3b in cloned blastocysts. These results indicate that cloned embryos have aberrant DNA methylation in the CpG sites of the PE region of Oct-4, and this may contribute directly to abnormal expression of this gene in cloned embryos.


Assuntos
Clonagem de Organismos , Embrião de Mamíferos/fisiologia , Elementos Facilitadores Genéticos , Fator 3 de Transcrição de Octâmero/genética , Animais , Blastocisto/fisiologia , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Feminino , Fertilização in vitro , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Técnicas de Transferência Nuclear , Fator 3 de Transcrição de Octâmero/metabolismo , Gravidez , DNA Metiltransferase 3B
8.
J Reprod Dev ; 52(5): 601-6, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16807506

RESUMO

Development of assisted reproductive technologies is necessary to obtain fertilized oocytes in a subfertile transgenic mouse strain. Here, we showed the application of laser-assisted drilling of the zona pellucida to in vitro fertilization of cryopreserved mouse oocytes with sperm from subfertile transgenic mice (C57BL/6N-Tg(UCP/FAD2)U8 strain). After cryopreservation by vitrification, the recovery and survival rates of the zona-drilled mouse oocytes were 97% (97/100) and 94% (91/97), respectively. In vitro fertilization of the cryopreserved zona-drilled mouse oocytes with sperm from the subfertile transgenic mice was greatly facilitated (60%, 55/91) compared to that of the cryopreserved zona-intact mouse oocytes (11%, 81/768). In vitro fertilized embryos that developed to the 2-cell stage were again cryopreserved by vitrification, and after warming they were transferred into recipient females. Subsequently, six viable offspring were delivered, and all were confirmed to be transgenic mice. These results indicate that laser-assisted zona drilling of oocytes combined with cryopreservation by vitrification may be a useful approach for large-scale production of in vitro fertilized embryos for managing transgenic mouse strains with reproductive disabilities such as subfertile sperm.


Assuntos
Fertilização in vitro/métodos , Animais , Animais Geneticamente Modificados , Criopreservação , Feminino , Fertilidade , Lasers , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oócitos , Espermatozoides , Zona Pelúcida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...