Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 12370, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524884

RESUMO

We present a rapid label-free imaging flow cytometry and cell classification approach based directly on raw digital holograms. Off-axis holography enables real-time acquisition of cells during rapid flow. However, classification of the cells typically requires reconstruction of their quantitative phase profiles, which is time-consuming. Here, we present a new approach for label-free classification of individual cells based directly on the raw off-axis holographic images, each of which contains the complete complex wavefront (amplitude and quantitative phase profiles) of the cell. To obtain this, we built a convolutional neural network, which is invariant to the spatial frequencies and directions of the interference fringes of the off-axis holograms. We demonstrate the effectiveness of this approach using four types of cancer cells. This approach has the potential to significantly improve both speed and robustness of imaging flow cytometry, enabling real-time label-free classification of individual cells.


Assuntos
Aprendizado Profundo , Holografia , Algoritmos , Holografia/métodos , Redes Neurais de Computação
2.
Cytometry A ; 99(5): 511-523, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32910546

RESUMO

We present a method for real-time visualization and automatic processing for detection and classification of untreated cancer cells in blood during stain-free imaging flow cytometry using digital holographic microscopy and machine learning in throughput of 15 cells per second. As a preliminary model for circulating tumor cells in the blood, following an initial label-free rapid enrichment stage based on the cell size, we applied our holographic imaging approach, providing the quantitative optical thickness profiles of the cells during flow. We automatically classified primary and metastatic colon cancer cells, where the two types of cancer cells were isolated from the same individual, as well as four types of blood cells. We used low-coherence off-axis interferometric phase microscopy and a microfluidic channel to image cells during flow quantitatively. The acquired images were processed and classified based on their morphology and quantitative phase features during the cell flow. We achieved high accuracy of 92.56% for distinguishing between the cells, enabling further automatic enrichment and cancer-cell grading from blood. © 2020 International Society for Advancement of Cytometry.


Assuntos
Holografia , Neoplasias , Células Sanguíneas , Corantes , Aprendizado de Máquina , Microscopia
3.
J Biophotonics ; 13(11): e202000151, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32700785

RESUMO

We present a method for label-free imaging and sorting of cancer cells in blood, which is based on a dielectrophoretic microfluidic chip and label-free interferometric phase microscopy. The chip used for imaging has been embedded with dielectrophoretic electrodes, and therefore it can be used to sort the cells based on the decisions obtained during the cell flow by the label-free quantitative imaging method. Hence, we obtained a real-time, automatic, label-free imaging flow cytometry with the ability to sort the cells during flow. To validate our model, we combined into the label-free imaging interferometer a fluorescence imaging channel that indicated the correctness of the label-free sorting. We have achieved above 98% classification success and 69% sorting accuracy at flow rates of 4 to 7 µL hr-1 . In the future, this method is expected to help in label-free sorting of circulating tumor cells in blood following an initial state-of-the-art cell enrichment.


Assuntos
Holografia , Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Contagem de Células , Separação Celular , Citometria de Fluxo , Humanos , Microfluídica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...