Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NMR Biomed ; 28(10): 1332-44, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26332290

RESUMO

The performance of multichannel transmit coil layouts and parallel transmission (pTx) RF pulse design was evaluated with respect to transmit B1 (B1 (+)) homogeneity and specific absorption rate (SAR) at 3 T for a whole body coil. Five specific coils were modeled and compared: a 32-rung birdcage body coil (driven either in a fixed quadrature mode or a two-channel transmit mode), two single-ring stripline arrays (with either 8 or 16 elements), and two multi-ring stripline arrays (with two or three identical rings, stacked in the z axis and each comprising eight azimuthally distributed elements). Three anatomical targets were considered, each defined by a 3D volume representative of a meaningful region of interest (ROI) in routine clinical applications. For a given anatomical target, global or local SAR controlled pTx pulses were designed to homogenize RF excitation within the ROI. At the B1 (+) homogeneity achieved by the quadrature driven birdcage design, pTx pulses with multichannel transmit coils achieved up to about eightfold reduction in local and global SAR. When used for imaging head and cervical spine or imaging thoracic spine, the double-ring array outperformed all coils, including the single-ring arrays. While the advantage of the double-ring array became much less pronounced for pelvic imaging, with a substantially larger ROI, the pTx approach still provided significant gains over the quadrature birdcage coil. For all design scenarios, using the three-ring array did not necessarily improve the RF performance. Our results suggest that pTx pulses with multichannel transmit coils can reduce local and global SAR substantially for body coils while attaining improved B1 (+) homogeneity, particularly for a "z-stacked" double-ring design with coil elements arranged on two transaxial rings.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Algoritmos , Simulação por Computador , Desenho de Equipamento , Humanos , Modelos Teóricos , Software
2.
Magn Reson Med ; 73(3): 1137-50, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24752979

RESUMO

PURPOSE: We compare the performance of eight parallel transmit (pTx) body arrays with up to 32 channels and a standard birdcage design. Excitation uniformity, local specific absorption rate (SAR), global SAR, and power metrics are analyzed in the torso at 3 T for radiofrequency (RF)-shimming and 2-spoke excitations. METHODS: We used a fast cosimulation strategy for field calculation in the presence of coupling between transmit channels. We designed spoke pulses using magnitude least squares optimization with explicit constraint of SAR and power and compared the performance of the different pTx coils using the L-curve method. RESULTS: PTx arrays outperformed the conventional birdcage coil in all metrics except peak and average power efficiency. The presence of coupling exacerbated this power efficiency problem. At constant excitation fidelity, the pTx array with 24 channels arranged in three z-rows could decrease local SAR more than 4-fold (2-fold) for RF-shimming (2-spoke) compared to the birdcage coil for pulses of equal duration. Multi-row pTx coils had a marked performance advantage compared to single row designs, especially for coronal imaging. CONCLUSION: PTx coils can simultaneously improve the excitation uniformity and reduce SAR compared to a birdcage coil when SAR metrics are explicitly constrained in the pulse design.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Magnetismo/instrumentação , Modelos Biológicos , Absorção de Radiação , Simulação por Computador , Desenho Assistido por Computador , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Magn Reson Med ; 57(6): 1148-58, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17534905

RESUMO

An eight-rung, 3T degenerate birdcage coil (DBC) was constructed and evaluated for accelerated parallel excitation of the head with eight independent excitation channels. Two mode configurations were tested. In the first, each of the eight loops formed by the birdcage was individually excited, producing an excitation pattern similar to a loop coil array. In the second configuration a Butler matrix transformed this "loop coil" basis set into a basis set representing the orthogonal modes of the birdcage coil. In this case the rung currents vary sinusoidally around the coil and only four of the eight modes have significant excitation capability (the other four produce anticircularly polarized (ACP) fields). The lowest useful mode produces the familiar uniform B(1) field pattern, and the higher-order modes produce center magnitude nulls and azimuthal phase variations. The measured magnitude and phase excitation profiles of the individual modes were used to generate one-, four-, six-, and eightfold-accelerated spatially tailored RF excitations with 2D and 3D k-space excitation trajectories. Transmit accelerations of up to six-fold were possible with acceptable levels of spatial artifact. The orthogonal basis set provided by the Butler matrix was found to be advantageous when an orthogonal subset of these modes was used to mitigate B(1) transmit inhomogeneities using parallel excitation.


Assuntos
Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/instrumentação , Artefatos , Desenho de Equipamento , Imageamento Tridimensional/instrumentação , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...