Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Dyn ; 251(4): 577-608, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34582081

RESUMO

Primary cilia are dynamic compartments that regulate multiple aspects of cellular signaling. The production, maintenance, and function of cilia involve more than 1000 genes in mammals, and their mutations disrupt the ciliary signaling which manifests in a plethora of pathological conditions-the ciliopathies. Skeletal ciliopathies are genetic disorders affecting the development and homeostasis of the skeleton, and encompass a broad spectrum of pathologies ranging from isolated polydactyly to lethal syndromic dysplasias. The recent advances in forward genetics allowed for the identification of novel regulators of skeletogenesis, and revealed a growing list of ciliary proteins that are critical for signaling pathways implicated in bone physiology. Among these, a group of protein kinases involved in cilia assembly, maintenance, signaling, and disassembly has emerged. In this review, we summarize the functions of cilia kinases in skeletal development and disease, and discuss the available and upcoming treatment options.


Assuntos
Ciliopatias , Polidactilia , Animais , Cílios/metabolismo , Ciliopatias/genética , Ciliopatias/patologia , Homeostase , Mamíferos , Polidactilia/genética , Proteínas/genética
2.
Cells ; 10(6)2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207779

RESUMO

A single primary cilium projects from most vertebrate cells to guide cell fate decisions. A growing list of signaling molecules is found to function through cilia and control ciliogenesis, including the fibroblast growth factor receptors (FGFR). Aberrant FGFR activity produces abnormal cilia with deregulated signaling, which contributes to pathogenesis of the FGFR-mediated genetic disorders. FGFR lesions are also found in cancer, raising a possibility of cilia involvement in the neoplastic transformation and tumor progression. Here, we focus on FGFR gene fusions, and discuss the possible mechanisms by which they function as oncogenic drivers. We show that a substantial portion of the FGFR fusion partners are proteins associated with the centrosome cycle, including organization of the mitotic spindle and ciliogenesis. The functions of centrosome proteins are often lost with the gene fusion, leading to haploinsufficiency that induces cilia loss and deregulated cell division. We speculate that this complements the ectopic FGFR activity and drives the FGFR fusion cancers.


Assuntos
Transformação Celular Neoplásica/patologia , Centrossomo/metabolismo , Cílios , Neoplasias , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Animais , Cílios/metabolismo , Cílios/patologia , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Fusão Oncogênica
3.
EMBO Mol Med ; 12(11): e11739, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33200460

RESUMO

Mutations in genes affecting primary cilia cause ciliopathies, a diverse group of disorders often affecting skeletal development. This includes Jeune syndrome or asphyxiating thoracic dystrophy (ATD), an autosomal recessive skeletal disorder. Unraveling the responsible molecular pathology helps illuminate mechanisms responsible for functional primary cilia. We identified two families with ATD caused by loss-of-function mutations in the gene encoding adrenergic receptor kinase 1 (ADRBK1 or GRK2). GRK2 cells from an affected individual homozygous for the p.R158* mutation resulted in loss of GRK2, and disrupted chondrocyte growth and differentiation in the cartilage growth plate. GRK2 null cells displayed normal cilia morphology, yet loss of GRK2 compromised cilia-based signaling of Hedgehog (Hh) pathway. Canonical Wnt signaling was also impaired, manifested as a failure to respond to Wnt ligand due to impaired phosphorylation of the Wnt co-receptor LRP6. We have identified GRK2 as an essential regulator of skeletogenesis and demonstrate how both Hh and Wnt signaling mechanistically contribute to skeletal ciliopathies.


Assuntos
Síndrome de Ellis-Van Creveld , Quinase 2 de Receptor Acoplado a Proteína G/genética , Proteínas Hedgehog , Proteínas Hedgehog/genética , Humanos , Mutação , Via de Sinalização Wnt
4.
Cell Mol Life Sci ; 77(19): 3885-3903, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31820037

RESUMO

Many patients with chronic myeloid leukemia in deep remission experience return of clinical disease after withdrawal of tyrosine kinase inhibitors (TKIs). This suggests signaling of inactive BCR-ABL, which allows the survival of cancer cells, and relapse. We show that TKI treatment inhibits catalytic activity of BCR-ABL, but does not dissolve BCR-ABL core signaling complex, consisting of CRKL, SHC1, GRB2, SOS1, cCBL, p85a-PI3K, STS1 and SHIP2. Peptide microarray and co-immunoprecipitation results demonstrate that CRKL binds to proline-rich regions located in C-terminal, intrinsically disordered region of BCR-ABL, that SHC1 requires pleckstrin homology, src homology and tyrosine kinase domains of BCR-ABL for binding, and that BCR-ABL sequence motif located in disordered region around phosphorylated tyrosine 177 mediates binding of three core complex members, i.e., GRB2, SOS1, and cCBL. Further, SHIP2 binds to the src homology and tyrosine kinase domains of BCR-ABL and its inositol phosphatase activity contributes to BCR-ABL-mediated phosphorylation of SHC1. Together, this study characterizes protein-protein interactions within the BCR-ABL core complex and determines the contribution of particular BCR-ABL domains to downstream signaling. Understanding the structure and dynamics of BCR-ABL interactome is critical for the development of drugs targeting integrity of the BCR-ABL core complex.


Assuntos
Proteínas de Fusão bcr-abl/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Linhagem Celular Tumoral , Proteínas de Fusão bcr-abl/química , Proteínas de Fusão bcr-abl/genética , Células HEK293 , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Fosforilação , Análise Serial de Proteínas , Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Domínios de Homologia de src
5.
Proc Natl Acad Sci U S A ; 116(10): 4316-4325, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30782830

RESUMO

Vertebrate primary cilium is a Hedgehog signaling center but the extent of its involvement in other signaling systems is less well understood. This report delineates a mechanism by which fibroblast growth factor (FGF) controls primary cilia. Employing proteomic approaches to characterize proteins associated with the FGF-receptor, FGFR3, we identified the serine/threonine kinase intestinal cell kinase (ICK) as an FGFR interactor. ICK is involved in ciliogenesis and participates in control of ciliary length. FGF signaling partially abolished ICK's kinase activity, through FGFR-mediated ICK phosphorylation at conserved residue Tyr15, which interfered with optimal ATP binding. Activation of the FGF signaling pathway affected both primary cilia length and function in a manner consistent with cilia effects caused by inhibition of ICK activity. Moreover, knockdown and knockout of ICK rescued the FGF-mediated effect on cilia. We provide conclusive evidence that FGF signaling controls cilia via interaction with ICK.


Assuntos
Cílios/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Animais , Sistemas CRISPR-Cas , Fatores de Crescimento de Fibroblastos/metabolismo , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Camundongos Knockout , Modelos Animais , Simulação de Acoplamento Molecular , Células NIH 3T3 , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/genética , Proteômica , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Transdução de Sinais
6.
Sci Signal ; 11(548)2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30228226

RESUMO

Sustained activation of extracellular signal-regulated kinase (ERK) drives pathologies caused by mutations in fibroblast growth factor receptors (FGFRs). We previously identified the inositol phosphatase SHIP2 (also known as INPPL1) as an FGFR-interacting protein and a target of the tyrosine kinase activities of FGFR1, FGFR3, and FGFR4. We report that loss of SHIP2 converted FGF-mediated sustained ERK activation into a transient signal and rescued cell phenotypes triggered by pathologic FGFR-ERK signaling. Mutant forms of SHIP2 lacking phosphoinositide phosphatase activity still associated with FGFRs and did not prevent FGF-induced sustained ERK activation, demonstrating that the adaptor rather than the catalytic activity of SHIP2 was required. SHIP2 recruited Src family kinases to the FGFRs, which promoted FGFR-mediated phosphorylation and assembly of protein complexes that relayed signaling to ERK. SHIP2 interacted with FGFRs, was phosphorylated by active FGFRs, and promoted FGFR-ERK signaling at the level of phosphorylation of the adaptor FRS2 and recruitment of the tyrosine phosphatase PTPN11. Thus, SHIP2 is an essential component of canonical FGF-FGFR signal transduction and a potential therapeutic target in FGFR-related disorders.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Quinases da Família src/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linhagem Celular Tumoral , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/genética , Células HEK293 , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Fosforilação , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Quinases da Família src/genética
7.
Hum Mol Genet ; 27(6): 1093-1105, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29360984

RESUMO

Cilia project from almost every cell integrating extracellular cues with signaling pathways. Constitutive activation of FGFR3 signaling produces the skeletal disorders achondroplasia (ACH) and thanatophoric dysplasia (TD), but many of the molecular mechanisms underlying these phenotypes remain unresolved. Here, we report in vivo evidence for significantly shortened primary cilia in ACH and TD cartilage growth plates. Using in vivo and in vitro methodologies, our data demonstrate that transient versus sustained activation of FGF signaling correlated with different cilia consequences. Transient FGF pathway activation elongated cilia, while sustained activity shortened cilia. FGF signaling extended primary cilia via ERK MAP kinase and mTORC2 signaling, but not through mTORC1. Employing a GFP-tagged IFT20 construct to measure intraflagellar (IFT) speed in cilia, we showed that FGF signaling affected IFT velocities, as well as modulating cilia-based Hedgehog signaling. Our data integrate primary cilia into canonical FGF signal transduction and uncover a FGF-cilia pathway that needs consideration when elucidating the mechanisms of physiological and pathological FGFR function, or in the development of FGFR therapeutics.


Assuntos
Acondroplasia/fisiopatologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Displasia Tanatofórica/fisiopatologia , Acondroplasia/genética , Animais , Cartilagem/metabolismo , Condrócitos/metabolismo , Cílios/patologia , Cílios/fisiologia , Ciliopatias/genética , Ciliopatias/fisiopatologia , Fatores de Crescimento de Fibroblastos/metabolismo , Lâmina de Crescimento/metabolismo , Humanos , Camundongos , Células NIH 3T3 , Fenótipo , Cultura Primária de Células , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais/fisiologia , Displasia Tanatofórica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...